References
- Obisesan TO, Gillum RF, Johnson S, Umar N, Williams D, Bond V, Kwagyan J. Neuroprotection and neurodegeneration in Alzheimer's disease: role of cardiovascular disease risk factors, implications for dementia rates, and prevention with aerobic exercise in African Americans. Int J Alzheimers Dis 2012;2012:568382.
- Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML. Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005;25:1904-13. https://doi.org/10.1523/JNEUROSCI.4540-04.2005
- Katzman R. Alzheimer's disease. N Engl J Med 1986;314:964-73. https://doi.org/10.1056/NEJM198604103141506
- Choonara YE, Pillay V, du Toit LC, Modi G, Naidoo D, Ndesendo VM, Sibambo SR. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int J Mol Sci 2009;10:2510-57. https://doi.org/10.3390/ijms10062510
- Murphy MP, LeVine H 3rd. Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis 2010;19:311-23. https://doi.org/10.3233/JAD-2010-1221
- LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 2007;8:499-509. https://doi.org/10.1038/nrn2168
- Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D. Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy. Alzheimers Res Ther 2010;2:1. https://doi.org/10.1186/alzrt24
- Chen Z, Jalabi W, Shpargel KB, Farabaugh KT, Dutta R, Yin X, Kidd GJ, Bergmann CC, Stohlman SA, Trapp BD. Lipopolysaccharideinduced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci 2012;32:11706-15. https://doi.org/10.1523/JNEUROSCI.0730-12.2012
- Choi SK, Park YS, Choi DK, Chang HI. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J Microbiol Biotechnol 2008;18:1990-6.
- Bamberger ME, Landreth GE. Microglial interaction with beta-amyloid: implications for the pathogenesis of Alzheimer's disease. Microsc Res Tech 2001;54:59-70. https://doi.org/10.1002/jemt.1121
- Lee CY, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna) 2010;117:949-60. https://doi.org/10.1007/s00702-010-0433-4
-
Nimmervoll B, White R, Yang JW, An S, Henn C, Sun JJ, Luhmann HJ. LPS-induced microglial secretion of
$TNF{\alpha}$ increases activitydependent neuronal apoptosis in the neonatal cerebral cortex. Cereb Cortex 2013;23:1742-55. https://doi.org/10.1093/cercor/bhs156 - Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann Transl Med 2015;3:136.
- Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer's disease: the Kame Project. Am J Med 2006;119:751-9. https://doi.org/10.1016/j.amjmed.2006.03.045
- Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J, Sun YE, Chen G, Yu Y, Zhao J, Pei G. A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation. Aging Cell 2015;14:784-96. https://doi.org/10.1111/acel.12356
- Dragan S, Andrica F, Serban MC, Timar R. Polyphenols-rich natural products for treatment of diabetes. Curr Med Chem 2015;22:14-22.
- Zapolska-Downar D, Bryk D, Malecki M, Hajdukiewicz K, Sitkiewicz D. Aronia melanocarpa fruit extract exhibits anti-inflammatory activity in human aortic endothelial cells. Eur J Nutr 2012;51:563-72. https://doi.org/10.1007/s00394-011-0240-1
- Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor J, Hlavacova I, Snopek L, Orsavova J. Fruits of black chokeberry aronia melanocarpa in the prevention of chronic diseases. Molecules 2017;22:E944. https://doi.org/10.3390/molecules22060944
- Lee KP, Kim JE, Park WH. Cytoprotective effect of rhamnetin on miconazole-induced H9c2 cell damage. Nutr Res Pract 2015;9:586-91. https://doi.org/10.4162/nrp.2015.9.6.586
-
Paulrayer A, Adithan A, Lee JH, Moon KH, Kim DG, Im SY, Kang CW, Kim NS, Kim JH. Aronia melanocarpa (black chokeberry) reduces ethanol-induced gastric damage via regulation of HSP-70,
$NF-{\kappa}B $ , and MCP-1 signaling. Int J Mol Sci 2017;18:E1195. https://doi.org/10.3390/ijms18061195 - Lee KP, Choi NH, Sudjarwo GW, Ahn SH, Park IS, Lee SR, Hong H. Protective effect of areca catechu leaf ethanol extract against ethanolinduced gastric ulcers in ICR mice. J Med Food 2016;19:127-32. https://doi.org/10.1089/jmf.2015.3476
- Gasparini L, Rusconi L, Xu H, del Soldato P, Ongini E. Modulation of beta-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. J Neurochem 2004;88:337-48.
- Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008;5:37. https://doi.org/10.1186/1742-2094-5-37
- Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, Citron M, Landreth G. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. J Neurosci 2003;23:7504-9.
- Granado-Lorencio F, Hernandez-Alvarez E. Functional foods and health effects: a nutritional biochemistry perspective. Curr Med Chem 2016;23:2929-57. https://doi.org/10.2174/0929867323666160615105746
- Aronson JK. Defining 'nutraceuticals': neither nutritious nor pharmaceutical. Br J Clin Pharmacol 2017;83:8-19. https://doi.org/10.1111/bcp.12935
- Asiimwe N, Yeo SG, Kim MS, Jung J, Jeong NY. Nitric oxide: exploring the contextual link with Alzheimer's disease. Oxid Med Cell Longev 2016;2016:7205747.
-
Danysz W, Parsons CG. Alzheimer's disease,
${\beta}$ -amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol 2012;167:324-52. https://doi.org/10.1111/j.1476-5381.2012.02057.x - Selkoe DJ. Alzheimer's disease is a synaptic failure. Science 2002;298:789-91. https://doi.org/10.1126/science.1074069
- Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 2016;8:595-608. https://doi.org/10.15252/emmm.201606210
- Pero RW, Lund H, Leanderson T. Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother Res 2009;23:335-46. https://doi.org/10.1002/ptr.2628
Cited by
- Smallanthus sonchifolius leaf attenuates neuroinflammation vol.22, pp.2, 2018, https://doi.org/10.20463/jenb.2018.0014
- Effect of black chokeberry on skeletal muscle damage and neuronal cell death vol.23, pp.4, 2018, https://doi.org/10.20463/jenb.2019.0028
- Effect of Korean Magnolia obovata Extract on Platelet-Derived Growth Factor-Induced Vascular Smooth Muscle Cells vol.26, pp.9, 2020, https://doi.org/10.1007/s11655-019-3171-y
- Evaluation of Antioxidant and Anti-Inflammatory Activity of Anthocyanin-Rich Water-Soluble Aronia Dry Extracts vol.25, pp.18, 2018, https://doi.org/10.3390/molecules25184055
- Immunomodulatory activity and protective effects of chokeberry fruit extract on Listeria monocytogenes infection in mice vol.11, pp.9, 2020, https://doi.org/10.1039/d0fo00946f
- Therapeutic effect of Shinkiwhan, herbal medicine, regulates OPG/RANKL/RANK system on ovariectomy-induced bone loss rat vol.24, pp.3, 2018, https://doi.org/10.20463/pan.2020.0017
- The Efficacy of Black Chokeberry Fruits against Cardiovascular Diseases vol.22, pp.12, 2021, https://doi.org/10.3390/ijms22126541
- Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria vol.114, pp.None, 2018, https://doi.org/10.1016/j.tifs.2021.06.020
- The efficacy of berries against lipopolysaccharide-induced inflammation: A review vol.117, pp.None, 2018, https://doi.org/10.1016/j.tifs.2021.01.015