DOI QR코드

DOI QR Code

Evaluation of the Shaft Resistance of Drilled-in Steel Tubular Pile in Rock Depending on the Proportion of Annulus Grouting Material

주면고정액 배합비에 따른 암반매입 강관말뚝의 주면지지력 평가

  • Received : 2017.08.03
  • Accepted : 2017.12.09
  • Published : 2018.02.01

Abstract

Foundation of tower structures such as wind turbine, pylon, and chimney have to resist considerably large overturning moment due to long distance from foundations to load point and large horizontal load. Pile foundations subjected to uplift force are needed to economically support such structure even in the case of rock layer. Therefore, this research performed the laboratory model tests with the variables, W/C ratio and sand proportion, to evaluate the effect of the mix proportion of grouting material on shaft resistance. In the case of cement paste, maximum and residual shaft resistance were distributed in uniform range irrespective of the changes of W/C ratio. However in the case of mortar, they were decreased with increasing W/C ratio, while they were increased and then decreased with increasing sand proportion. In the case of no sand, the maximum shaft resistance was about 540~560kPa regardless of the W/C ratio. When the sand proportion was 40%, it was about 770~870kPa depending on W/C ratio, which was about 40~50% higher than that without sand. The optimum proportion found in this research was around 40% of sand proportion and 80~100% of W/C ratio.

풍력발전기, 송전탑, 굴뚝 등과 같은 타워 구조물의 기초는 기초에서부터 하중 작용점까지의 거리가 멀고 큰 수평하중이 작용하여 매우 큰 전도모멘트에 저항해야 한다. 이러한 구조물을 경제적으로 지지하기 위해서는 암반층이라도 인발력을 받는 말뚝기초를 시공해야 한다. 따라서, 본 연구에서는 암반매입 강관말뚝에 사용되는 주면고정액의 배합비가 주면지지력에 미치는 영향을 평가하기 위하여 물/시멘트비와 잔골재의 배합비를 실험변수로 삼아 모형실험을 수행하였다. 잔골재를 배합하지 않은 시멘트풀의 경우 물/시멘트비의 변화에 관계없이 최대 주면지지력과 잔류 주면지지력은 일정한 범위에 분포하였고, 잔골재가 배합된 경우는 물/시멘트비의 증가에 따라서는 감소하였고 잔골재 배합비의 증가에 따라서는 증가하다 감소하는 경향을 나타내었다. 잔골재가 없는 경우 최대주면지지력은 물/시멘트비에 상관없이 약 540~560kPa을 나타내었고, 잔골재비가 40%인 경우 물/시멘트비에 따라 약 770~870kPa을 보여 잔골재가 없는 경우에 비하여 약 40~55% 증가되었다. 본 실험에서 찾은 최적배합은 잔골재비가 40% 정도, 물/시멘트비가 80~100% 이었다.

Keywords

References

  1. Korean Geotechnical Society (KGS) (2015). Code requirements for structural foundation design, CIR press (in Korean).
  2. Lee, I. (2013). Fundamental of rock mechanics (2nd edition), CIR press (in Korean).
  3. Maertens, L. (2002). "Design and installation of steel open end piles in weathered basalt." International Deep Foundations Congress 2002, Orlando, USA, pp. 1-16.
  4. Min, C. (2016). Reinforced Concrete Design(3rd), GoomiBook (in Korean).
  5. Moon, K., Park, S. and Heo, J. (2014a). "A study on the skin friction of steel pile embedded in rock." Proc. of the 2014 Korean Society of Civil Engineers Conf., KSCE, Daegu, Korea, pp. 1647-1648 (in Korean).
  6. Moon, K., Park, S. and Shin, M. (2017). "Mecahnical properties of filling materials for bored pile in rock." Journal of the Korean Society of Civil Engineers, Vol. 37, No. 4, pp. 637-645 (in Korean). https://doi.org/10.12652/KSCE.2017.37.4.0637
  7. Moon, K., Park, S., Kim, Y. and Yang, S. (2014b). "Mechanical characteristics of basalt in Jeju island with relation to porosity." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 4, pp. 1215-1225 (in Korean). https://doi.org/10.12652/Ksce.2014.34.4.1215
  8. Nezamian, A., Al-Mahaidi, R., Grundy, P. and O'Loughlin, B. (2002). "Push-out strength of concrete plugs in tubular steel piles." Proc. of the Twelfth (2002) Intl. Offshore and Polar Engineering Conf., ISOPE, Kitakyushu, Japan, pp. 60-64.
  9. Shakir-Khalil, H. (1993a). "Pushout strength of concrete-filled steel hollow sections." The Structural Engineers, Vol. 71, No. 13, pp. 230-233.
  10. Shakir-Khalil, H. (1993b). "Resistance of concrete-filled steel tubes to pushout forces." The Structural Engineers, Vol. 71, No. 13, pp. 234-243.