Acknowledgement
Supported by : University of Rijeka
References
- Arita, M. and Jirka, G.H. (1987), "Two-layer model of saline wedge. I: Entrainment and interfacial friction", J. Hydr. Eng., 113(10), 1229-1246. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:10(1229)
- Bermudez, A. and Vazquez, M.E. (1994), "Upwind methods for hyperbolic conservation laws with source terms", Comput. Flu., 23(8), 1049-1071. https://doi.org/10.1016/0045-7930(94)90004-3
- Castro, M.J., Fernandez-Nieto, E.D., Gonzalez-Vida, J.M. and Pares-Madronal, C. (2011), "Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system", J. Sci. Comput., 48(1-3), 16-40. https://doi.org/10.1007/s10915-010-9427-5
- Castro, M.J., Garcia-Rodriguez, J.A., Gonzalez-Vida, J.M., Macias, J., Pares, C. and Vazquez-Cendon, M.E. (2004), "Numerical simulation of two-layer shallow water flows through channels with irregular geometry", J. Comput. Phys., 195(1), 202-235. https://doi.org/10.1016/j.jcp.2003.08.035
- Christodoulou, G. (1986), "Interfacial mixing in stratified flows", J. Hydr. Res., 24(2), 77-92. https://doi.org/10.1080/00221688609499323
- Geyer, W.R. and MacCready, P. (2014), "The estuarine circulation", Ann. Rev. Flu. Mech., 46(1), 175-197. https://doi.org/10.1146/annurev-fluid-010313-141302
- Hansen, D.V. and Rattray, M. (1966), "New dimensions in estuary classification", Limnol. Oceanogr., 11(3), 319-326. https://doi.org/10.4319/lo.1966.11.3.0319
- Harten, A. (1984), "On a class of high resolution total-variation-stable finite-difference schemes", SIAM J. Numer. Analy., 21(1), 1-23. https://doi.org/10.1137/0721001
- Ibanez, C., Pont, D. and Prat, N. (1997), "Characterization of the ebre and rhone estuaries: A basis for defining and classifying salt-wedge estuaries", Limnol. Oceanogr., 42(1), 89-101. https://doi.org/10.4319/lo.1997.42.1.0089
- Krvavica, N. (2016), "One-dimensional numerical model for layered shallow water flow in highly stratified estuaries", Ph.D. Dissertation, University of Rijeka, Rijeka, Croatia.
- Krvavica, N., Kozar, I., Travas, V. and Ozanic, N. (2017a), "Numerical modelling of two-layer shallow water flow in microtidal salt-wedge estuaries: Finite volume solver and field validation", J. Hydrol. Hydromech., 65(1), 49-59. https://doi.org/10.1515/johh-2016-0039
- Krvavica, N., Mofardin, B., Ruzic, I. and Ozanic, N. (2012), "Measurement and analysis of salinization at the rjecina estuary", Gradevinar, 64(11), 923-933.
- Krvavica, N., Travas, V. and Ozanic, N. (2016), "A field study of interfacial friction and entrainment in a microtidal salt-wedge estuary", Environ. Flu. Mech., 16(6), 1223-1246. https://doi.org/10.1007/s10652-016-9480-1
- Krvavica, N., Travas, V. and Ozanic, N. (2017b), "Salt-wedge response to variable river flow and sea-level rise in the microtidal river estuary, Croatia", J. Coast. Res., 33(4), 802-814. https://doi.org/10.2112/JCOASTRES-D-16-00053.1
- MacDonald, D.G. and Geyer, W.R. (2004), "Turbulent energy production and entrainment at a highly stratified estuarine front", J. Geophys. Res.: Oceans, 109(C5), 1-17.
- Moler, C.B. and Stewart, G.W. (1973), "An algorithm for generalized matrix eigenvalue problems", SIAM J. Numer. Analy., 10(2), 241-256. https://doi.org/10.1137/0710024
- Toro, E.F. (2001), Shock-Capturing Methods for Free-Surface Shallow Flows, John Wiley, New Jersey, U.S.A.
- Ungarish, M. (2009), An Introduction to Gravity Currents and Intrusions, CRC Press, Taylor & Francis Group, Florida, U.S.A.
- White, F.M. (2003), Fluid Mechanics, McGraw-Hill Book Company, New York, U.S.A.
- Yen, B.C. (2002), "Open channel flow resistance", J. Hydraul. Eng., 128(1), 20-39. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20)
Cited by
- Daily influent variation for dynamic modeling of wastewater treatment plants vol.9, pp.2, 2018, https://doi.org/10.12989/csm.2020.9.2.111