DOI QR코드

DOI QR Code

High concentration ratio approximation of linear effective properties of materials with cubic inclusions

  • Mejak, George (Faculty of Mathematics and Physics, University of Ljubljana)
  • 투고 : 2017.05.03
  • 심사 : 2017.06.29
  • 발행 : 2018.02.25

초록

This paper establish a high concentration ratio approximation of linear elastic properties of materials with periodic microstructure with cubic inclusions. The approximation is derived using first few terms of power series expansion of the solution of the equivalent eigenstrain problem with a homogeneous eigenstrain approximation. Viability of the approximation at high concentration ratios is proved by comparison with a numerical solution of the homogenization problem. To this end some theoretical result of symmetry properties of the homogenization problem are given. Using these results efficient numerical computation on a reduced computational domain is presented.

키워드

참고문헌

  1. Barbarosie, C., Tortorelli, D.A. and Watts, S. (2017), "On domain symmetry and its use in homogenization", Comput. Meth. Appl. Mech. Eng., 320, 1-45. https://doi.org/10.1016/j.cma.2017.01.009
  2. Baughman, R.H., Shacklette, R.H., Zakhidov, A.A. and Stafstrom, S. (1998), "Negative Poisson's ratios as a common feature of cubic materials", Natu., 392, 362-365. https://doi.org/10.1038/32842
  3. Bensoussan, A., Lions, J.L. and Papanicolaou, G. (1987), Asymptotic Analysis for Periodic Structures, North- Holland, Amsterdam, the Netherlands.
  4. Berger, J.B., Wadley, H.N.G. and McMeeging, R.M. (2017), "Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness", Nat., 543, 533-537. https://doi.org/10.1038/nature21075
  5. Bertram, A. (2005), Elasticity and Plasticity of Large Deformations. An Introduction, Springer, Berlin, Germany.
  6. Bradley, C.J. and Cracknell, A.P. (2010), The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups, Oxford University Press, Oxford.
  7. Chadwick, P., Vianello, M. and Cowin, S.C. (2001), "A new proof that the number of linear elastic symmetries is eight", J. Mech. Phys. Solid., 49, 2471-2492. https://doi.org/10.1016/S0022-5096(01)00064-3
  8. Cioranescu, D. and Donato, P. (1999), An Introduction to Homogenization, Oxford University Press, Oxford.
  9. Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion and related problems", Proc. Roy. Soc. Lond., A 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
  10. Hashin, Z. (1960), "The elastic moduli of heterogeneous materials", J. Appl. Mech., 29, 143-150.
  11. Hassani, B. (1996), "A direct method to derive the boundary conditions of the homogenization equation for symmetric cells", Comm. Numer. Meth. Eng., 12, 185-196. https://doi.org/10.1002/(SICI)1099-0887(199603)12:3<185::AID-CNM970>3.0.CO;2-2
  12. Henrici, P. (1977), Applied and Computational Complex Analysis-Vol 1: Power Series, Integration, Conformal Mapping, Location of Zeros, Wiley, New York, U.S.A.
  13. Heitkam, S., Drenckhan, W., Titscher, T., Weaire, D., Kreuter, D.C., Hajnal, D., Piechon, F. and Frohlich, J. (2016), "Elastic properties of solid material with various arrangements of spherical voids", Eur. J. Mech. A/Sol., 59, 252-264. https://doi.org/10.1016/j.euromechsol.2016.04.003
  14. Hill, R. (1964), "Theory of mechanical properties of fibre-strengthened materials: I elastic behaviour", J. Mech. Phys. Sol., 12, 199-212. https://doi.org/10.1016/0022-5096(64)90019-5
  15. HSL Mathematical Software Library, Version 2.4.0 (2016), http://www.hsl.rl.ac.uk/.
  16. Jaric, J.P., Kuzmanovic, D. and Golubovic, D. (2008), "On tensors of elasticity", Theoret. Appl. Mech., 35, 119-136. https://doi.org/10.2298/TAM0803119J
  17. Lukkassen, D., Meidell, A. and Vigdergauz, S. (2008), "On the elastic deformation of symmetric periodic structures", Q. Jl Mech. Appl. Math., 56, 441-454.
  18. Liu, L.P. (2008), "Solutions to the Eshelby conjectures", Proc. R. Soc. A, 464, 573-594. https://doi.org/10.1098/rspa.2007.0219
  19. Mejak, G. (2014), "Variational formulation of the equivalent eigenstrain method with an application to a problem with radial eigenstrains", J. Solids Struct., 51, 1601-1616. https://doi.org/10.1016/j.ijsolstr.2014.01.011
  20. Nemat-Nasser, S. and Hori, M. (1998), Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, Amsterdam, the Netherlands.
  21. Oleinik, O.A., Shamaev, A.S. and Yosifian, G.A. (1992), Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, the Netherlands.
  22. Ranganathan, S.I. and Ostoja-Starzewski, M. (2008), "Universal Elastic Anisotropy Index", Phys. Rev. Lett., 101, 055504-4. https://doi.org/10.1103/PhysRevLett.101.055504
  23. Senthil, K. and Satyanarayanan, K.S. (2016), "Influence of interface on the behavior of infilled frame subjected to lateral load using linear analysis", Coupled Syst. Mech., 5, 127-144. https://doi.org/10.12989/csm.2016.5.2.127
  24. Ting, T.C.T. (1996), Anisotropic Elasticity, Theory and Applications, Oxford University Press, New York, U.S.A.
  25. Ting, T.C.T. and Chen, T. (2005), "Poisson's ratio for anisotropic elastic materials can have no bounds", Q. Jl Mech. Appl. Math., 58, 73-82. https://doi.org/10.1093/qjmamj/hbh021
  26. Walpole, L.J. (1981), "Elastic behavior of composite materials:theoretical foundations", Adv. Appl. Mech., 21, Academic Press, New York, U.S.A., 169-242.