References
- Barbarosie, C., Tortorelli, D.A. and Watts, S. (2017), "On domain symmetry and its use in homogenization", Comput. Meth. Appl. Mech. Eng., 320, 1-45. https://doi.org/10.1016/j.cma.2017.01.009
- Baughman, R.H., Shacklette, R.H., Zakhidov, A.A. and Stafstrom, S. (1998), "Negative Poisson's ratios as a common feature of cubic materials", Natu., 392, 362-365. https://doi.org/10.1038/32842
- Bensoussan, A., Lions, J.L. and Papanicolaou, G. (1987), Asymptotic Analysis for Periodic Structures, North- Holland, Amsterdam, the Netherlands.
- Berger, J.B., Wadley, H.N.G. and McMeeging, R.M. (2017), "Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness", Nat., 543, 533-537. https://doi.org/10.1038/nature21075
- Bertram, A. (2005), Elasticity and Plasticity of Large Deformations. An Introduction, Springer, Berlin, Germany.
- Bradley, C.J. and Cracknell, A.P. (2010), The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups, Oxford University Press, Oxford.
- Chadwick, P., Vianello, M. and Cowin, S.C. (2001), "A new proof that the number of linear elastic symmetries is eight", J. Mech. Phys. Solid., 49, 2471-2492. https://doi.org/10.1016/S0022-5096(01)00064-3
- Cioranescu, D. and Donato, P. (1999), An Introduction to Homogenization, Oxford University Press, Oxford.
- Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion and related problems", Proc. Roy. Soc. Lond., A 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
- Hashin, Z. (1960), "The elastic moduli of heterogeneous materials", J. Appl. Mech., 29, 143-150.
- Hassani, B. (1996), "A direct method to derive the boundary conditions of the homogenization equation for symmetric cells", Comm. Numer. Meth. Eng., 12, 185-196. https://doi.org/10.1002/(SICI)1099-0887(199603)12:3<185::AID-CNM970>3.0.CO;2-2
- Henrici, P. (1977), Applied and Computational Complex Analysis-Vol 1: Power Series, Integration, Conformal Mapping, Location of Zeros, Wiley, New York, U.S.A.
- Heitkam, S., Drenckhan, W., Titscher, T., Weaire, D., Kreuter, D.C., Hajnal, D., Piechon, F. and Frohlich, J. (2016), "Elastic properties of solid material with various arrangements of spherical voids", Eur. J. Mech. A/Sol., 59, 252-264. https://doi.org/10.1016/j.euromechsol.2016.04.003
- Hill, R. (1964), "Theory of mechanical properties of fibre-strengthened materials: I elastic behaviour", J. Mech. Phys. Sol., 12, 199-212. https://doi.org/10.1016/0022-5096(64)90019-5
- HSL Mathematical Software Library, Version 2.4.0 (2016), http://www.hsl.rl.ac.uk/.
- Jaric, J.P., Kuzmanovic, D. and Golubovic, D. (2008), "On tensors of elasticity", Theoret. Appl. Mech., 35, 119-136. https://doi.org/10.2298/TAM0803119J
- Lukkassen, D., Meidell, A. and Vigdergauz, S. (2008), "On the elastic deformation of symmetric periodic structures", Q. Jl Mech. Appl. Math., 56, 441-454.
- Liu, L.P. (2008), "Solutions to the Eshelby conjectures", Proc. R. Soc. A, 464, 573-594. https://doi.org/10.1098/rspa.2007.0219
- Mejak, G. (2014), "Variational formulation of the equivalent eigenstrain method with an application to a problem with radial eigenstrains", J. Solids Struct., 51, 1601-1616. https://doi.org/10.1016/j.ijsolstr.2014.01.011
- Nemat-Nasser, S. and Hori, M. (1998), Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, Amsterdam, the Netherlands.
- Oleinik, O.A., Shamaev, A.S. and Yosifian, G.A. (1992), Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, the Netherlands.
- Ranganathan, S.I. and Ostoja-Starzewski, M. (2008), "Universal Elastic Anisotropy Index", Phys. Rev. Lett., 101, 055504-4. https://doi.org/10.1103/PhysRevLett.101.055504
- Senthil, K. and Satyanarayanan, K.S. (2016), "Influence of interface on the behavior of infilled frame subjected to lateral load using linear analysis", Coupled Syst. Mech., 5, 127-144. https://doi.org/10.12989/csm.2016.5.2.127
- Ting, T.C.T. (1996), Anisotropic Elasticity, Theory and Applications, Oxford University Press, New York, U.S.A.
- Ting, T.C.T. and Chen, T. (2005), "Poisson's ratio for anisotropic elastic materials can have no bounds", Q. Jl Mech. Appl. Math., 58, 73-82. https://doi.org/10.1093/qjmamj/hbh021
- Walpole, L.J. (1981), "Elastic behavior of composite materials:theoretical foundations", Adv. Appl. Mech., 21, Academic Press, New York, U.S.A., 169-242.