DOI QR코드

DOI QR Code

Failure mechanisms in coupled poro-plastic medium

  • Hadzalic, Emina (Universite de Technologie de Compiegne/Sorbonne Universites, Laboratoire Roberval de Mecanique, Centre de Recherche Royallieu) ;
  • Ibrahimbegovic, Adnan (Universite de Technologie de Compiegne/Sorbonne Universites, Laboratoire Roberval de Mecanique, Centre de Recherche Royallieu) ;
  • Nikolic, Mijo (Universite de Technologie de Compiegne/Sorbonne Universites, Laboratoire Roberval de Mecanique, Centre de Recherche Royallieu)
  • Received : 2017.03.25
  • Accepted : 2017.04.03
  • Published : 2018.02.25

Abstract

The presence of the pore fluid strongly influences the reponse of the soil subjected to external loading and in many cases increases the risk of final failure. In this paper, we propose the use of a discrete beam lattice model with the aim to investigate the coupling effects of the solid and fluid phase on the response and failure mechanisms in the saturated soil. The discrete cohesive link lattice model used in this paper, is based on inelastic Timoshenko beam finite elements with enhanced kinematics in axial and transverse direction. The coupling equations for the soil-pore fluid interaction are derived from Terzaghi's principle of effective stresses, Biot's porous media theory and Darcy's law for fluid flow through porous media. The application of the model in soil mechanics is illustrated through several numerical simulations.

Keywords

Acknowledgement

Supported by : French Ministry of Foreign Affairs, French Embassy

References

  1. Armero, F. and Callari, C. (1999), "An analysis of strong discontinuities in a saturated poro-plastic solid", J. Numer. Meth. Eng., 1999(46), 1673-1698.
  2. Benkemoun, N., Hautefeuille, M., Colliat, J.B. and Ibrahimbegovic, A. (2010), "Failure of heterogeneous materials: 3D meso-scale FE models with embedded discontinuities", J. Numer. Meth. Eng., 2010(82), 1671-1688.
  3. Benkemoun, N., Ibrahimbegovic A. and Colliat J.B. (2010), "Anisotropic constitutive model of plasticity capable of accounting for details of meso-structure of two-phase composite material", Comput. Struct., 2012(90), 153-162.
  4. Biot, M.A. (1941), "General theory of three-dimensional consolidation", J. Appl. Phys., 1941(12), 155-164.
  5. Bolander, J.E. and Berton., S. (2004), "Simulation of shrinkage induced cracking in cement composite overlays", Cement Concrete Compos., 2004(26), 861-871.
  6. Callari, C. and Armero, F. (2002), "Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media", Comput. Meth. Appl. Mech. Eng., 2002(191), 4371-4400.
  7. Callari, C. and Armero, F. (2004), "Analysis and numerical simulation of strong discontinuities in finite strain poroplasticity", Comput. Meth. Appl. Mech. Eng., 2004(193), 2941-2986.
  8. Callari, C., Armero, F. and Abati, A. (2010), "Strong discontinuities in partially saturated poroplastic solids", Comput. Meth. Appl. Mech. Eng., 2010(199)(23), 1513-1535. https://doi.org/10.1016/j.cma.2010.01.002
  9. De Borst, R., Rethore, J. and Abellan, M.A. (2006), "A numerical approach for arbitrary cracks in a fluidsaturated medium", Arch. Appl. Mech., 2006(75), 595-606.
  10. Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2015), "Combined hardening and localized failure with softening plasticity in dynamics", Coupled Syst. Mech., 2015(4), 115-136.
  11. Geuzaine, C. and Remache, J.F. (2009), "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities", J. Numer. Meth. Eng., 2009(79), 1309-1331.
  12. Grassl, P. (2009), "A lattice approach to model flow in cracked concrete", Cement Concrete Compos., 2009(31), 454-460.
  13. Hadzalic E., Ibrahimbegovic, A. and Dolarevic, S. (2017), "Failure mechanisms in coupled soil-foundation systems", Coupled Syst. Mech., 2017(6), 110-136
  14. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer.
  15. Ibrahimbegovic, A. and Delaplace, A. (2003), "Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material", Comput. Struct., 2003(81), 1255-1265.
  16. Imamovic, I., Ibrahimbegovic, A., Knopf-Lenoir, C. and Mesic, E. (2015), "Plasticity-damage model parameters identification for structural connections", Coupled Syst. Mech., 2015(4), 337-364.
  17. Larsson, J. and Larsson, R. (2000), "Finite-element analysis of localization of deformation and fluid pressure in an elastoplastic porous medium", J. Sol. Struct., 2000(37), 7231-7257.
  18. Lewis, R.W. and Schrefler, B.A. (1998), The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley and Sons.
  19. Nikolic, M. and Ibrahimbegovic, A. (2015), "Rock mechanics model capable of representing initial heterogeneities and full set of 3D failure mechanisms", Comput Meth. Appl. Mech. Eng., 2015(290), 209-227.
  20. Nikolic, M., Ibrahimbegovic, A. and Miscevic, P. (2015), "Brittle and ductile failure of rocks: Embedded discontinuity approach for representing mode I and mode II failure mechanisms", J. Numer. Meth. Eng., 2015(102), 1507-1526.
  21. Nikolic, M., Ibrahimbegovic, A. and Miscevic, P. (2016), "Discrete element model for the analysis of fluidsaturated fractured poro-plastic medium based on sharp crack representation with embedded strong discontinuities", Comput. Meth. Appl. Mech. Eng., 2016(298), 407-427.
  22. Nikolic, M., Karavelic, E., Ibrahimbegovic, A. and Miscevic, P. (2017), "Lattice element models and their peculiarities", Arch. Comput. Meth. Eng.
  23. Prevost, J.H. (1983), "Implicit-explicit schemes for nonlinear consolidation", Comput. Meth. Appl. Mech. Eng., 1983(39), 225-239.
  24. Rethore., J., De Borst, R. and Abellan, MA. (2008), "A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks", Comput. Mech., 2008(42), 227-238.
  25. Savija, B., Lukovic, M. and Schlangen, E. (2014), "Lattice modeling of rapid chloride migration in concrete", Cement Concrete Compos., 2014(61), 49-63.
  26. Savija, B., Pacheco J.A. and Schlangen, E. (2013), "Lattice modeling of chloride diffusion in sound and cracked concrete", Cement Concrete Compos., 2013(42), 30-40.
  27. Secchi., S. and Schrefler, B.A. (2014), "Hydraulic fracturing and its peculiarities", Asia Pac. J. Comput. Eng., 2014(1), 1-8.
  28. Singh, M. and Sawant, V.A. (2014), "Parametric study on flexible footing resting on partially saturated soil", Coupled Syst. Mech., 2014(3), 233-245.
  29. Smith, M. and Griffiths, D.V. (2004), Programming the Finite Element Method, 4th Edition, John Wiley & Sons.
  30. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley.
  31. Zienkiewicz, O.C. and Shiomi, T. (1984), "Dynamic behavior of saturated porous media; the generalized biot formulation and its numerical solution", J. Numer. Analy. Meth. Geomech., 1984(8), 71-96.
  32. Zienkiewicz, O.C. and Taylor, R.L. (2005), The Finite Element Method, Vols. I, II, III, Elsevier.

Cited by

  1. Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam vol.8, pp.6, 2019, https://doi.org/10.12989/csm.2019.8.6.537
  2. 3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium vol.9, pp.2, 2018, https://doi.org/10.12989/csm.2020.9.2.125