DOI QR코드

DOI QR Code

Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process

Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가

  • Shin, Weon Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Seyun (Materials Research Center Samsung Advanced Institute of Technology) ;
  • Jeong, Hyung Mo (Department of Nano Applied Engineering, Kangwon National University)
  • 신원호 (한국세라믹기술원 에너지환경소재본부) ;
  • 김세윤 (삼성전자 종합기술원 무기소재랩) ;
  • 정형모 (강원대학교 나노응용공학과)
  • Received : 2018.02.09
  • Accepted : 2018.02.16
  • Published : 2018.02.28

Abstract

Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

Keywords

References

  1. T. Sen, A. Sebastianelli and I. J. Bruce: J. Am. Chem. Soc., 128 (2006) 7130. https://doi.org/10.1021/ja061393q
  2. D. H. Kang and J. H. Hong: J. Korean Soc. Manuf. Technol. Eng., 21 (2012) 15.
  3. B. K. Gupta, D. Haranath, S. Saini, V. N. Singh and V. Shanker: Nanotechnology, 21 (2010) 1.
  4. M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver and M. J. Snowden: Langmuir, 17 (2001) 7145. https://doi.org/10.1021/la0105883
  5. K. F. Schrum, J. M. Lancaster, S. E. Johnston and S. D. Gilman: Anal. Chem., 72 (2000) 4317. https://doi.org/10.1021/ac0005114
  6. X. Brokmann, J. P. Hermier, G. Messin, P. Desbiolles, J. P. Bouchaud and M. Dahan: Phys. Rev. Lett., 90 (2003) 120601.
  7. E. Loh: Phys. Rev., 147 (1966) 332. https://doi.org/10.1103/PhysRev.147.332
  8. K. Y. Jung and W. H. Kim: Korean Chem. Eng. Res., 53 (2015) 620. https://doi.org/10.9713/kcer.2015.53.5.620
  9. A. K. Levine and F. C. Palilla: Appl. Phys. Lett., 5 (1964) 118. https://doi.org/10.1063/1.1723611
  10. O. Lehmann, K. Kompe and M. Haase: J. Am. Chem. Soc., 126 (2004) 14935.
  11. M. Ocana, W. P. Hsu and E. Matijevic: Langmuir, 7 (1991) 2911. https://doi.org/10.1021/la00060a008
  12. W. P. Hsu, R. C. Yu and E. J. Matijevic: J. Colloid Interface Sci., 156 (1993) 56. https://doi.org/10.1006/jcis.1993.1080
  13. M. Yu, J. Lin and J. Fang: Chem. Mater., 17 (2005) 1783. https://doi.org/10.1021/cm0479537
  14. W. Stober, A. Fink and E. J. Bohn: J. Colloid Interface Sci., 26 (1968) 62. https://doi.org/10.1016/0021-9797(68)90272-5
  15. B. M. Reddy, P. Lakshmanan and A. Khan: J. Phys. Chem. B, 108 (2004) 16855. https://doi.org/10.1021/jp047217q
  16. L. Wu, J. C. Yu, L. Z. Zhang, X. C. Wang and S. K. Li: J. Solid State Chem., 177 (2004) 3666. https://doi.org/10.1016/j.jssc.2004.06.020
  17. A. Huignard, T. Gacoin and J. P. Boilot: Chem. Mater., 12 (2000) 1090. https://doi.org/10.1021/cm990722t
  18. P. R. Diamente, M. Raudsepp and F. C. J. M. van Veggel: Adv. Funct. Mater., 17 (2007) 363. https://doi.org/10.1002/adfm.200600142
  19. M. Ryo, Y. Wada, T. Okubo, Y. Hasegawa and S. J. Yanagida: J. Phys. Chem. B, 107 (2003) 11302. https://doi.org/10.1021/jp034993+