
논리연구 21-1(2018) pp. 59-96

Liar-Type Paradoxes and Intuitionistic Natural 
Deduction Systems*

1)

Seungrak Choi

【Abstract】It is often said that in a purely formal perspective, intuitionistic 
logic has no obvious advantage to deal with the liar-type paradoxes. In this 
paper, we will argue that the standard intuitionistic natural deduction systems 
are vulnerable to the liar-type paradoxes in the sense that the acceptance of 
the liar-type sentences results in inference to absurdity (⊥). The result shows 
that the restriction of the Double Negation Elimination (DNE) fails to block 
the inference to ⊥. It is, however, not the problem of the intuitionistic 
approaches to the liar-type paradoxes but the lack of expressive power of the 
standard intuitionistic natural deduction system. 
   We introduce a meta-level negation, ⊬, for a given system   and a 
meta-level absurdity, ⋏, to the intuitionistic system. We shall show that in the 
system, the inference to ⊥ is not given without the assumption that the 
system is complete. Moreover, we consider the Double Meta-Level Negation 
Elimination rules (DMNE) which implicitly assume the completeness of the 
system. Then, the restriction of DMNE can rule out the inference to ⊥.
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1 Introduction

Richard M. Sainsbury (2009, p.1) defines a paradox as ‘an appar-
ently unacceptable conclusion derived by apparently acceptable rea-
soning from apparently acceptable premises.’ As the acceptable pro-
cesses hardly draw the unacceptable conclusion from the acceptable
premises, there are three ways to solve the paradox. At first, one can
reject that the premises are acceptable. The second is to reject the ac-
ceptability of the reasoning. The last is to claim that the conclusion
is acceptable.

‘This sentence is not true’ is a well-known liar sentence which
leads to the liar paradox. The liar sentence is equivalent to its nega-
tion in virtue of its meaning. The derivation of absurdity (⊥) in the
case of the liar paradox is given by making use of the Law of Ex-
cluded Middle (LEM). (See Appendix B.) LEM is often regarded as
the source of the derivation of ⊥ from the liar-type paradoxes. (Cf.
Hartry Field (2008, p. 15).) LEM seems to be a requisite inference
for deriving ⊥ from the liar sentence.

The main theme of intuitionism is to reject the Principle of Bi-
valence (POB) that every sentence is either true or false. Even if the
rejection of POB does not always imply the rejection of LEM, an
intuitionist welcomes to refuse both POB and LEM.1 An intuitionis-
tic interpretation of truth gives three cases of determining the truth-
value of a given sentence: true, false, and truth-valueless. A sentence
ϕ is true if it has a proof, and is false if it has a disproof; or else
it is truth-valueless. When the liar sentence has no proof, nothing
can transfer any proof of the liar sentence to ⊥, so the liar sentence

1A system with the decidable set of sentences can accept LEM without the as-
sumption of POB.
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would have no consequence. Hence, there is no inference to ⊥ from
the liar sentence, whereas the proof in Appendix B draws the infer-
ence to⊥ with the application of LEM. In this sense, an intuitionistic
solution to the liar paradox is to claim that the inference to ⊥ from
the liar sentence has an unacceptable rule of reasoning, such as LEM.
Hence, intuitionistic logic has the advantage to block the liar paradox
by rejecting POB and LEM.

The intuitionistic solution has been challenged by the view that
there exists an inference to ⊥ without POB and LEM. Graham Priest
(1983, 2006) proposes a proof of ⊥ from Berry’s paradox without
LEM. If his claims were correct, there exists a case that POB and
LEM play no role at all in the inference to ⊥. Furthermore, philoso-
phers have claimed that, in a purely technical sense, an intuitionis-
tic formal system cannot rule out the inferences of ⊥. For example,
when he argues that semantic paradoxes are not linked to Michael
Dummett’s notion of the indefinitely extensible concepts, Timothy
Williamson (1998, p. 2) mentions a passing remark that intuitionistic
logic has no advantage to block paradoxes, by saying,

From a purely technical perspective, intuitionistic logic presents no
obvious advantage. In the simplest paradoxes, a plausible general
principle turns out to have a substitution instance of the form [ϕ ↔
¬ϕ], which is inconsistent in both intuitionistic and classical logic.
Adopting intuitionistic logic would not enable us to retain the plau-
sible general principle while blocking the inference to a contradic-
tion.2

2An indefinitely extensible concept is one whose extension cannot be completely
determined: any set of objects that falls under the relevant concept can be extended.
Dummett (1993, p. 454) claims that paradoxes are generated by possessing indefi-
nitely extensible concepts. It is often noted that Dummett’s claim is extended to an
argument against classical logic. The logic in which indefinitely extensible concepts
are expressible is non-classical because all statements in it are not determinately true
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Also, Neil Tennant (2017, p. 284) has maintained that LEM does not
have any role in the derivation of ⊥ from paradoxes, so paradoxical
inferences to ⊥ can be derived by using only intuitionistic logic. The
present paper deals with these challenges and queries on whether
intuitionistic logic is in practice vulnerable to the liar-type paradoxes.

An intuitionistic natural deduction system styled by Dag Prawitz
(1965) is a primary candidate formal system for intuitionistic logic.
We firstly show that in the intuitionistic natural deduction systems,
there exist derivations of⊥ from the (strengthened) liar paradox with-
out the application of the Double Negation Elimination (DNE) which
is provably equivalent to LEM. In addition, it can be seen that a
liar-type sentence gives a particular instance of DNE. It underscores
the fact that the liar-type sentence has its proof in the intuitionistic
natural deduction system. If the intuitionistic solution to the liar-
type paradoxes claims that the liar-type sentences have no proof-
condition, the suggested results fall foul of the intuitionistic solution.

In what follows, we will investigate the case that the restriction
of any instances of DNE and of DNE itself fail to rule out the deriva-
tion of ⊥ in the suggested system. Even though the situation seems
to support the above challenge, it does not count against the intu-
itionistic solution to the liar-type paradoxes. Rather, it is an incapa-
bility of the formal system to characterize the intuitionistic meaning
of negation. We will reinforce the intuitionistic system by applying a
meta-level negation, 0S, for a given system S and a meta-level absur-
dity, f, to the system. We shall show that the inference to ⊥ is not
derivable if the system is not complete. Moreover, we will consider
fC−rules for the Double Meta-Level Negation Elimination (DMNE).

or false. Dummett’s indefinitely extensible concept is not an issue of this paper, so
we leave aside the issue.
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With fC−rules, we have a derivation of ⊥ in a given system since
fC−rules implicitly assume that the system is complete. fC−rules
play a significant role to derive ⊥.

Section 2 briefly introduces preliminary notations and logical
rules. Section 3 provides a proof of⊥ from the liar sentence in the in-
tuitionistic natural deduction system, SIT , having the truth-predicate
and gives an instance of DNE from the liar sentence. In Section 4, we
will investigate the strengthened liar paradox analyzed in SITU with
the predicate of the truth-valuelessness, say USITU (pxq). Section 5 ar-
gues that the restriction of DNE does not block the inferences to⊥ in
SIT and SITU . The discussions from Section 3 to 5 appear to support
that an intuitionistic natural deduction system does not have a clear
benefit to block the inference to ⊥ from the liar-type paradoxes. We
will argue in Section 6, however, that the problem is the lack of ex-
pressive power of the system, but not the intuitionistic approaches to
the liar-type paradoxes. We shall have an intuitionistic system SI′ by
applying the meta-level negation, 0SI′ , and absurdity, f, to the in-
tuitionistic system SI , and show that there exists no inference to ⊥
unless SI′ is complete. Consequenty, even if the restriction of DNE
fails to block the inference to ⊥, the restriction of DMNE prevents
the inference to ⊥ in SI′ .

2 The Intuitionistic Interpretation and the Natural
Deduction System SI

A natural deduction system may be well-suited to the intuitionis-
tic interpretation of logical constants. Following Gerhard Gentzen
(1935), Prawitz (1965) gives a reference work on the natural deduc-
tion system with the idea that the meaning of logical constants is
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implicitly defined by its introduction rules (I−rules), while the elim-
ination rules (E-rules) are justified by respecting the stipulation made
by the I−rules. As Prawitz (2016) has argued that the idea is exten-
sionally equivalent to the intuitionistic interpretation, an intuitionistic
natural deduction system may be an appropriate formal system for in-
tuitionistic logic. In this section, we briefly introduce a standard intu-
itionistic interpretation of logical constants with some variations for
our purpose. Also, we give logical rules for an intuitionistic system
SI in the natural deduction style proposed by Prawitz (1965).

Let L be a language of intuitionistic logic and P be a set of proofs
of atomic sentences of L. O be a set of objects o. Say x,y be any free
variables and t be any term not free. ϕ , ψ , χ be any formulas. We as-
sume, for convenience, that each object o in O has its term t. For any
formula ϕ(x), we understand by ϕ(t) the closed sentence obtained
by substituting in ϕ(x) the term t of o for x. Let D be a sequence
of (constructive) proofs, say ‘derivation,’ used in the same manner as

‘deduction’ in Prawitz (1965, p. 24). We use
D

ϕ
for a derivation for

ϕ – i.e. a sequence of the proofs of ϕ .
ϕ

D

ψ

means a derivation of ψ

from ϕ . Let D1, ...,Dn be an arbitrary derivation with respect to P.
The intuitionistic interpretation through a proof over P of a closed
compound sentence in L is then proposed recursively as follows:

For any sentence ϕ1 and ϕ2,

1. A proof over P of ϕ1∧ϕ2 is a pair (D1,D2) of derivations such

that
D1

ϕ1
and

D2

ϕ2
.
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2. A proof over P of ϕ1∨ϕ2 is a pair (D1,D2) of derivations such

that
D1

ϕ1
or

D2

ϕ2
.

3. A proof over P of ϕ → ψ is a derivation D1 which converts

any proof of ϕ into a proof of ψ . (i.e.
ϕ

D

ψ

)

4. Nothing is a proof of ⊥.

5. A proof over P of ∃xϕ(x) is a derivation D1 such that
D1

ϕ(t)
where o of t in O.

6. A proof over P of ∀xϕ(x) is a derivation D1 which converts
any object o of O into a proof of ϕ(y) where y of any o in O.

A classical natural deduction system SC has the following rules:

D1

ϕ1

D2

ϕ2 ∧I
ϕ1∧ϕ2

D3

ϕ1∧ϕ2 ∧Ei=1,2
ϕi

[ϕ]1

D1

ψ
→ I,1

ϕ → ψ

D2

ϕ → ψ

D3

ϕ
→ E

ψ

D1

ϕi ∨I(i=1,2)
ϕ1∨ϕ2

D2

ϕ1∨ϕ2

[ϕ1]
1

D3

ψ

[ϕ2]
1

D4

ψ
∨E,1

ψ

D

⊥
⊥I

ϕ

[¬ϕ]1

D

⊥
⊥C,1

ϕ

D1

ϕ[y/x]
∀I

∀xϕ(x)

D2

∀xϕ(x)
∀E

ϕ[t/x]

D1

ϕ[t/x]
∃I

∃xϕ(x)

D2

∃xϕ(x)

[ϕ[y/x]]1

D3

ψ
∃E,1

ψ

¬ϕ is defined by ϕ →⊥. ϕ[x/y] means the substitution of x for y in
ϕ . A restriction of the eigenvariable y in ∀I− and ∃E−rules runs in
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a usual way. A derivation is open when it depends on assumptions
and closed when all assumptions are discharged or bound. DNE has
a form of the formula ¬¬ϕ → ϕ and its relative rule is ⊥C−rule.
An intuitionistic natural deduction system SI is given by dropping
⊥C−rule from SC. In addition, a minimal system SM is taken by drop-
ping⊥I-rule from SI . We write ‘SI ` ϕ’ to mean that SI derives ϕ and
‘SI 0 ϕ’ means that SI does not.3 We say that a system is intuitionis-
tic if it extends SI and any classical rules, e.g. ⊥C−, fC−rules, and
LEM, are not always admissible.4 Hence, if S is intuitionistic, then,
for some ϕ in L, S 0 ¬¬ϕ → ϕ .

Having this conception of the intuitionistic interpretation with its
natural deduction system, we will see in the next section that there
exists a derivation of ⊥ without the application of ⊥C−rule and the
liar sentence Φ implies ¬¬Φ→Φ.

3 The Liar Paradox and DNE

Let us consider that a language L of SI has a truth predicate T (pxq)
where ‘p’ and ‘q’ are the left and the right corner quotes. T (pxq)
expresses that pxq is true where pxq denotes x. Then, we have the

3Note that ‘S 0 ϕ’ and ‘0S ϕ’ are separated in this paper. ‘0’ is a binary predicate
and ‘0S’ is a meta-level negation for a system S. They express the same meaning
that S does not derive ϕ , but we shall not have any rule to derive f from S 0 ϕ and
ϕ , save from 0S ϕ and ϕ where 0S ϕ is defined by ϕ→f in a given system S. (Cf.
Section 4 and 6.)

4Let R be a rule with premises ϕ1, ...,ϕn and a conclusion ψ . S be a system of
rules. R is said to be admissible for S if S ` ϕ1, ...,ϕn implies S ` ψ .
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following rules for T (pxq).

D1

ϕ
T I

T (pϕq)

D2

T (pϕq)
T E

ϕ

A natural deduction system SIT is given by adding T I− and T E−rules
to SI . ϕ↔ψ is defined by (ϕ→ψ)∧(ψ→ ϕ). We define a formula
Φ as ¬T (pΦq). Then, we have a relation Φ↔ ¬T (pΦq). We say
that ϕ is a liar sentence if ϕ satisfies the relation ϕ ↔ ¬T (pϕq).
After having additional terminologies, we will prove that, for a liar
sentence Φ, if SIT `Φ↔¬T (pΦq), then SIT ` ⊥. Provided that SIT

accepts Φ↔¬T (pΦq) as a theorem, the result shows that there is a
closed derivation of ⊥ in SIT .

Suppose that there is a liar sentence Φ in L of SIT and SIT `
Φ ↔ ¬T (pΦq). It means that SIT has a closed derivation DL1 of
Φ↔¬T (pΦq). For our convenience sake, we use the following ab-
breviations:

D

Φ

LI1¬T (pΦq)

is an abbreviation for

D

Φ

DL1

Φ↔¬T (pΦq)
de f

(Φ→¬T (pΦq))∧ (¬T (pΦq)→Φ)
∧E

Φ→¬T (pΦq)
→ E

¬T (pΦq)
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Then,
D

¬T (pΦq)
LE1

Φ

is an abbreviation for

D

¬T (pΦq)

DL1

Φ↔¬T (pΦq)
de f

(Φ→¬T (pΦq)∧ (¬T (pΦq)→Φ)
∧E

¬T (pΦq)→Φ
→ E

Φ

¬Φ ↔ T (pΦq) is provable in SIT . (See Appendix A). There is a
derivation DL2 of ¬Φ↔ T (pΦq). Then,

D

¬Φ

LI2
T (pΦq)

is an abbreviation for

D

¬Φ

DL2

¬Φ↔ T (pΦq)
de f

(¬Φ→ T (pΦq))∧ (T (pΦq)→¬Φ)
∧E

¬Φ→ T (pΦq)
→ E

T (pΦq)

In addition,
D

T (pΦq)
LE2¬Φ
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is an abbreviation for

D

T (pΦq)

DL2

¬Φ↔ T (pΦq)
de f

(¬Φ→ T (pΦq)∧ (T (pΦq)→¬Φ)
∧E

T (pΦq)→¬Φ
→ E

¬Φ

For a liar sentence Φ, if SIT has a closed derivation D of Φ, then
we easily prove that SIT has a closed derivation of ⊥ in SIT .

D

Φ
T I

T (pΦq)

D

Φ

LI1¬T (pΦq)
→ E

⊥

However, it is unclear whether SIT has a closed derivation of Φ.
Rather one may claim that Φ↔ ¬T (pΦq) is true because Φ is de-
fined by ¬T (pΦq). If so, we have the following results.

Theorem 3.1. If SIT `Φ↔¬T (pΦq), then SIT `Φ↔¬Φ.

Proof. Suppose that SIT `Φ↔¬T (pΦq). Then, we can use LI1−,LI2−,
LE1−, and LE2−inferences.

[Φ]1

T I
T (pΦq)

LE2¬Φ
→ I,1

Φ→¬Φ

[¬Φ]2

LI2
T (pΦq)

T E
Φ

→ I,2¬Φ→Φ
∧I

(Φ→¬Φ)∧ (¬Φ→Φ)
de f

Φ↔¬Φ
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Corollary 3.2. If SIT `Φ↔¬T (pΦq), then SIT ` ⊥.

Proof. By Theorem 3.1, we have SIT ` Φ↔ ¬Φ. Then we have a

derivation
D1

¬Φ
.

[Φ]1
[Φ]1

theorem 3.1
Φ↔¬Φ

de f
(Φ→¬Φ)∧ (¬Φ→Φ)

∧E
Φ→¬Φ

→ E
¬Φ
→ E

⊥
→ I,1¬Φ

With the derivation D1, we either have a derivation D2 of Φ.

D1

¬Φ

theorem 3.1
Φ↔¬Φ

de f
(Φ→¬Φ)∧ (¬Φ→Φ)

∧E
¬Φ→Φ

→ E
Φ

Hence, the following process shows that SIT ` ⊥.

D1

¬Φ

D2

Φ
→ E

⊥

Furthermore, in the proof of Corollary 3.2, Φ↔¬T (pΦq) leads to a
derivation D2 of Φ. In this respect, we have the following result.
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Corollary 3.3. If SIT `Φ↔¬T (pΦq), then SIT ` ¬¬Φ→Φ.

Proof. From the derivation D2 of Φ in Corollary 3.2, we apply →
I−rule with the empty discharge and have ¬¬Φ→Φ.

When every sentence is derivable in a system, we say that it is trivial.
The proof of Corollary 3.3 does not use ⊥I−rule and is provable in
a weaker system SM with the rules for T (pxq). The triviality of SIT

does not matter for the proof of ¬¬Φ→Φ. Corollary 3.3 tells us that
the acceptance of Φ↔ ¬T (pΦq) in SIT admits the classical infer-
ence, such as DNE (or ⊥C−rule). An intuitionist accepts ⊥C−rule
for a formula that has a (constructive) proof. The result claims that
an intuitionistic natural deduction system SIT represents no more ob-
vious advantage than a classical system.

The intuitionist may answer that, for a liar sentence Φ, Φ ↔
¬T (pΦq) is not intuitionistically true, due to the fact that neither the
proof-condition of Φ nor Φ↔ ¬T (pΦq) is informed. For instance,
if ¬T (pΦq) means the truth-valuelessness of Φ and has no proof,
nothing can transfer any proof of ¬T (pΦq) to a proof of Φ. Namely,
¬T (pΦq)→ Φ is not intuitionistically true. Hence, while the proof-
condition of the liar-sentence is not known, Φ↔ ¬T (pΦq) is not
intuitionistically true.

On the other hand, some philosophers, like Priest (2006), can
claim that the inference to ⊥ occurs from the liar-type paradoxes
even though the truth-valuelessness is concerned. In the next section,
we will see a derivation of ⊥ from the strengthened liar paradox.
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4 The Intuitionistic ‘not true’ and The Strengthened
Liar Paradox

An intuitionist interprets the concept of truth in terms of a construc-
tive proof such that a sentence ϕ is (intuitionistically) true if and only
if ϕ has a constructive proof. In a classical interpretation, the sen-
tence ‘ϕ is not true’ has the same meaning of ‘ϕ is false,’ whereas,
in an intuitionistic interpretation, the former is much weaker than the
latter. Intuitionistically, ‘ϕ is false,’ that is ‘¬ϕ is true,’ implies ‘ϕ is
not true,’ but not vice versa. Thus, ‘ϕ is not true in a system S’ either
means S ` ¬ϕ or S 0 ϕ .

As has often been discussed, the liar sentence Φ will yield no de-
terminate truth-(or proof-)condition. The intuitionist will claim that
none of Φ and ¬Φ have proofs, which means that they are truth-
valueless. On the intuitionistic interpretation of→, there is no effec-
tive operation transforming any proof of Φ (or ¬Φ) into the conclu-
sion, so Φ↔¬T (pΦq) has no proof. Therefore, the inference from
Φ↔¬T (pΦq) to ⊥ does not occur.5 The strengthened liar paradox
is suggested at this point.

Let us consider a sentence Ψ in L which expresses that ‘Ψ’ is
false or truth-valueless. We suppose that every sentence is either true,
false, or truth-valueless, and that no sentence is more than one of true,
false, or truth-valueless. We say any form of the sentence ϕ ∧¬ϕ

contradiction. At first, if Ψ is true, then it is false or truth-valueless.
Hence it is either both true and false or both true and truth-valueless.

5One may deal with the sentence Φ↔¬T (pΦq) in the same way as ⊥ since ⊥
has no proof. In this case, there exists an inference from Φ↔¬T (pΦq) to⊥, i.e. an
absurd to an absurd. If Φ↔¬T (pΦq) has no proof and is absurd, it trivially implies
⊥. It may be a candidate interpretation of the inference to ⊥ from Φ↔¬T (pΦq),
but in this paper, we set aside the interpretation.
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This contradicts to the supposition, so Ψ is not true. Second, if Ψ

is false, then it is either false or truth-valueless. Ψ says that Ψ is
either false or truth-valueless. So what Ψ says is the case. Thus, Ψ is
true and false. Once again, a contradiction occurs, so it is not false.
The last option is to assume that Ψ is truth-valueless. However, the
similar inference leads us to a contradiction. From all the cases of the
strengthened liar paradox, we derive a contradiction (or absurdity).

To realize the strengthened liar paradox in a natural deduction
system, the truth-valuelessness must be expressible in the system. As
the claim 1 of Appendix A shows, the meaning of ¬T (pϕq) is the
same as of T (p¬ϕq). ¬T (pϕq) in the system does not express the
truth-valuelessness of ϕ , but the falsehood of ϕ . For a given system
S and a sentence ϕ in L, if S 0 ϕ and S 0 ¬ϕ , then ϕ and ¬ϕ have no
proof (or derivation) in S. The truth-valuelessness of ϕ in SIT is rep-
resented by the underivability, such as SIT 0 ϕ and SIT 0 ¬ϕ . Unfor-
tunately, SIT is incapable of representing the underivability because
it does not have any rule to derive SIT 0 ϕ (or SIT 0 ¬ϕ).

We assume that the underivability is expressible in the language
of an intuitionistic system. For any given intuitionistic system S, we
define a meta-level negation for S, 0S ϕ , as ϕ → f where ‘0S ϕ’
means S 0 ϕ and f is a meta-level absurdity constant. For any sys-
tem S, S is incomplete if, for some ϕ in L, S 0 ϕ and S 0 ¬ϕ; other-
wise complete. ⊥ and f are distinguished in an incomplete system.
For instance, if SIT has both derivations of ϕ and 0SIT ϕ , then by
→ E−rule, we have SIT ` f. However, f does not always mean ⊥
since SIT 0ϕ does not imply SIT `¬ϕ unless SIT is complete. Hence,
⊥ is derivable in SIT from ϕ and 0SIT ϕ only if SIT is complete.6

6An anonymous reviewer and Colin Caret say that it should be discussed whether
the meta-level negation and absurdity are philosophically acceptable. Truly, there is
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For a given system S and a sentence ϕ , we define US(pϕq) as the
sentence 0S ϕ∧ 0S ¬ϕ . We have a natural deduction system SITU by
adding the predicate USITU (pxq) to SIT . As noted above, in SIT and
SITU , ¬T (pϕq)↔ T (p¬ϕq) is provable, ¬T (pϕq) expresses that ϕ

is false. Let define Ψ as ¬T (pΨq)∨USITU (pΨq). Then, for any given
sentence ϕ and any system S, ϕ is a strengthened liar sentence over
S if ϕ satisfies the relation ϕ ↔¬T (pϕq)∨US(pϕq).

Suppose that there exists a strengthened liar sentence Ψ over SITU

in L and SITU has a derivation Dsl of Ψ↔¬T (pΨq)∨USITU (pΨq).
For convenience, we use the following abbreviations:

D

Ψ

SLI
¬T (pΨq)∨USITU (pΨq)

is an abbreviation for

D

Ψ

Dsl

Ψ↔¬T (pΨq)∨USITU (pΨq)
de f

(Ψ→¬T (pΨq)∨USITU (pΨq))∧ (¬T (pΨq)∨USITU (pΨq)→Ψ)
∧E

Ψ→¬T (pΨq)∨USITU (pΨq)
→ E

¬T (pΨq)∨USITU (pΨq)

no consensus of the interpretation of intuitionistic negation and absurdity. Prawitz
(2007, p.461) regards⊥ as an atomic sentence which expresses falsehood, but Dum-
mett (1991, pp.294-295) defines⊥ as the conjunction of all atomic sentences. More-
over, Tennant (1999) considers⊥ to be nothingness in the same way that the ancient
Hindus used ‘0’ for emptiness in arithmetic. In this regard, we may think that the
meta-level absurdity, f, means nothing and ⊥ stands for falsehood. Unfortunately,
space is insufficient to allow a more detailed discussion of this issue. We set aside
the issue in this paper.
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Also,
D

¬T (pΨq)∨USITU (pΨq)
SLE

Ψ

is an abbreviation for

D

¬T (pΨq)∨USITU (pΨq)

Dsl

Ψ↔¬T (pΨq)∨USITU (pΨq)
de f

(Ψ→¬T (pΨq)∨USITU (pΨq))∧ (¬T (pΨq)∨USITU (pΨq)→Ψ)
∧E

¬T (pΨq)∨USITU (pΨq)→Ψ
→ E

Ψ

With SLI− and SLE−inferences, the following theorem and corol-
lary show the inference to ⊥ and a particular instance of DNE from
the strengthened liar sentence Ψ.

Theorem 4.1. If SITU ` Ψ↔ ¬T (pΨq)∨USITU (pΨq) and SITU `
f→⊥, then SITU ` ⊥.

Proof. Suppose SITU `Ψ↔¬T (pΨq)∨USITU (pΨq). Then, we can
use SLI− and SLE−inferences. Also, we suppose that SITU ` f→
⊥. Then, we have a derivation D⊥ of f→⊥ in SITU and an open
derivation D1 of ⊥ from [USITU (pΨq)] and [Ψ].

[USITU (pΨq)]3
de f

0SITU Ψ∧ 0SITU ¬Ψ
∧E

0SITU Ψ [Ψ]1

→ E
f

D⊥

f→⊥
→ E

⊥

Having D1, the following derivation gives a closed derivation D2 of
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¬Ψ.

[Ψ]1

SLI
¬T (pΨq)∨USITU (pΨq)

[¬T (pΨq)]2
[Ψ]1

T I
T (pΨq)

→ E
⊥

[Ψ]1, [USITU (pΨq)]3

D1

⊥
∨E,2,3⊥

→ I,1¬Ψ

From the claim 1 of Appendix A, we have a derivation DT of¬T (pΨq)↔
T (p¬Ψq) in SITU . With the derivation D2 of ¬Ψ, the following pro-
cess gives a closed derivation D3 of Ψ in SITU .

D2

¬Ψ
T I

T (p¬Ψq)

DT

¬T (pΨq)↔ T (p¬Ψq)
de f

(¬T (pΨq)→ T (p¬Ψq))∧ (T (p¬Ψq)→¬T (pΨq))
∧E

T (p¬Ψq)→¬T (pΨq)
→ E

¬T (pΨq)
∨I

¬T (pΨq)∨USITU (pΨq)
SLE

Ψ

Having the derivation D2 and D3, we have the derivation of ⊥ in
SITU .

D2

¬Ψ

D3

Ψ
→ E

⊥

Corollary 4.2. If SITU ` Ψ↔ ¬T (pΨq)∨USITU (pΨq) and SITU `
f→⊥, then SITU ` ¬¬Ψ→Ψ.

Proof. From the proof of Theorem 4.1, we have a derivation D2 of
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Ψ in SITU .
D2

Ψ
→ I,∅¬¬Ψ→Ψ

Theorem 4.1 explicates that even if the truth-valuelessness, USITU ,
is expressible in SITU , there exists an inference to ⊥. In addition,
Corollary 4.2 says that the strengthened liar sentence Ψ has a proof
in SITU . These results do not use ⊥C−rule, so one may claim that an
intuitionistic system like SITU does not have any advantage to elimi-
nate the inferences to ⊥.

5 The Rejection of DNE Does Not Block the Inference
to ⊥.

If POB and the application of LEM have a pivotal role to yield ⊥
from the liar-type paradoxes, intuitionistic logic has a benefit of pre-
venting the liar-type paradoxes. The strengthened liar paradox in a
semantic version presumes that every sentence is either true, false, or
truth-valueless. At first glance, the presumption may seem to reject
POB, but in fact, it is an extended version of POB. For an intuitionist,
truth-valuelessness is a gap between truth and falsity, whereas truth-
valuelessness in the semantic strengthened liar is the third value as
a glut between them. In short, the intuitionist’s truth-valuelessness is
the prooflessness, yet the truth-valuelessness of the semantic strength-
ened liar is not.

With respect to the issue of LEM, Priest (1983) has attempted to
show that LEM is unnecessary for the establishment of the derivation
of ⊥ from Berry’s paradox. If it were successful, there exists a case
that the rejection of LEM does not exclude the inference to ⊥.
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Unfortunately, Ross Brady (1984) argues that Priest needs LEM
to derive ⊥ from Berry’s paradox, and explains how Priest implicitly
assumes LEM. Priest (2006, pp. 25–27) proposes an alternative argu-
ment for the derivation of⊥. However, his proof has an application of
DNE which is provably equivalent to LEM. His proof is unsuccessful
to show that the inference to ⊥ exists without LEM.

Even if Priest (1983, 2006) fails to establish⊥ from Berry’s para-
dox without LEM, Corollary 3.2 and Theorem 4.1 show the deriva-
tions of ⊥ without ⊥C−rule in the intuitionistic natural deduction
systems, SIT and SITU . Moreover, Corollary 3.3 and 4.2 provide proofs
of the instances of DNE. If an intuitionistic system has to refuse
any instances of DNE, both SIT and SITU are not intuitionistic, or
any derivation of an instance of DNE is to be restricted. For in-
stance, Corollary 3.3 proves that, for a liar sentence Φ, if SIT `Φ↔
¬T (pΦq), then SIT ` ¬¬Φ→ Φ. If the intuitionist has to reject all
the instances of DNE, (s)he must accept that for every ϕ in L, SIT 0
¬¬ϕ → ϕ . An application of modus tollens to Corollary 3.3 gives
SIT 0 Φ↔¬T (pΦq), so the inference to ⊥ from Φ↔¬T (pΦq) in
SIT is rejected.

The restriction of any instances of DNE, however, is too strong
because the intuitionist accepts the instance if it has a proof. Further-
more, though every instance of DNE is rejected in any intuitionistic
systems, the restriction is unable to block every inference to ⊥. Let
us consider any intuitionistic natural deduction system with the fol-
lowing incoherent rules:

D1

ϕi
tonkI(i=1,2)

ϕ1 tonk ϕ2

D2

ϕ1 tonk ϕ2
tonkE(i=1,2)

ϕi



Liar-Type Paradoxes and Intuitionistic Natural Deduction Systems 79

Then, we easily have a derivation of ⊥ on the left side below as well
as an instance of DNE on the right.

[ϕ]1

tonkI1
ϕ tonk ⊥

tonkE2⊥
→ I,1¬ϕ

tonkI1¬ϕ tonk ⊥
tonkE2⊥

[¬¬ϕ]2

tonkI1¬¬ϕ tonk ϕ
tonkE2

ϕ
→ I,2¬¬ϕ → ϕ

The issue is that the constraint of all instances of DNE does not pre-
vent the application of tonk-rules. A natural deduction rule can be
conceived as a scheme of a particular inference form. ⊥C-rule as
a scheme is the set of all inference forms deriving a conclusion ϕ

from an open derivation
[¬ϕ]

D

⊥
. If the restriction of all instances of

DNE implies the constraint of any inference form of ϕ from an open

derivation
[¬ϕ]

D

⊥
, it prohibits the use of ⊥C-rule. However, it does

not mean that any rule which derives an instance of DNE should be
rejected since all such rules do not share the same inference form.
The derivation of ¬¬ϕ → ϕ from tonk-rules has no open derivation
[¬ϕ]

D

⊥
. Therefore, the restriction of DNE (or of its instances) does

not block the inferences to ⊥.7

7The requirement of normalizability may eliminate the inference to ⊥. (Cf.
Prawitz (1965) and Tennant (1982, 1995, 2017)). Even if Tennant (1982) embraces
the requirement as an intuitionistic requirement, the intuitionistic natural deduction
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6 The Intuitionistic ‘not true’ as the Prooflessness

If our discussions above are correct, the intuitionistic natural deduc-
tion systems, SIT and SITU , have inferences to⊥ without the applica-
tion of ⊥C and the restriction of DNE does not block the inference.
However, it does not mean that any intuitionistic formal systems have
no advantage to rule out the inference. We shall consider an intuition-
istic natural deduction system SI with the meta-level absurdity f and
see that it blocks the inferences to ⊥ if ⊥→f is true.

As noted in Section 4 and 5, ‘ϕ is not true’ is intuitionistically
conceived in two ways: ¬ϕ has a proof, i.e. ϕ has a disproof, and ϕ

has no proof. For a given system S, ‘¬ϕ has a proof’ is expressed
in S by ‘S ` ¬ϕ’ and ‘ϕ has no proof’ is by ‘S 0 ϕ .’ To express
the prooflessness in an intuitionistic system, we presume that ‘0SI′ ’
is expressible in the language of an intuitionistic natural deduction
system SI′ . We read ‘ϕ is not true in SI′’ as 0SI′ ϕ , so to speak, ϕ→f.

We define a formula Φ as 0SI′ Φ. We say that ϕ is a liar sen-
tence in SI′ if ϕ satisfies the relation ϕ ↔0SI′ ϕ . Then, we have the
following theorems.

Theorem 6.1. If SI′ ` Φ↔0SI′ Φ and SI′ ` ⊥ → f, then SI′ `0SI′

Φ∧ 0SI′ ¬Φ.

Proof. Suppose that SI′ has a closed derivation of D0 of Φ↔0SI′ Φ

system is not a unique system that satisfies the requirement. Prawitz (1965) has
proven the Normal Form Theorem for a weak classical logic. The proof of the same
theorem for a full classical logic was suggested by Stålmarck (1991). Normalizabil-
ity is the property of the general proof-theory, but not only of intuitionistic logic.
In this paper, we focus on intuitionistic approaches to the liar-type paradoxes in the
intuitionistic natural deduction system. We set aside the issue of normalizability.
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and Df of ⊥→f. Then, we have a closed derivation D1 of 0SI′ Φ.

[Φ]1
[Φ]1

D0

Φ↔0SI′ Φ
de f

(Φ→0SI′ Φ)∧ (0SI′ Φ→Φ)
∧E

Φ→0SI′ Φ
→ E

0SI′ Φ
→ E

f
→ I,10SI′ Φ

Having D1, we have a closed derivation D2 of 0SI′ ¬Φ.

Df

⊥→f

[¬Φ]1

D1

0SI′ Φ

D0

Φ↔0SI′ Φ
de f

(Φ→0SI′ Φ)∧ (0SI′ Φ→Φ)
∧E

0SI′ Φ→Φ
→ E

Φ
→ E

⊥
→ E

f
→ I,10SI′ ¬Φ

Hence, from D1 of 0SI′ Φ and D2 of 0SI′ ¬Φ, we have 0SI′ Φ∧ 0SI′

¬Φ.

In addition, the inference to ⊥ is derivable in SI′ if f→⊥.

Theorem 6.2. If SI′ `Φ↔0SI′ Φ and SI′ `f→⊥, then SI′ ` ⊥.

Proof. From the proof of Theorem 6.1, we have a derivation D1 of
0SI′ Φ. Suppose that SI′ `f→⊥. Then, there exists a closed deriva-
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tion D⊥ of f→⊥. We have a derivation of ⊥ as follows:

D1

f→⊥

D1

0SI′ Φ

D1

0SI′ Φ

D0

Φ↔0SI′ Φ
de f

(Φ→0SI′ Φ)∧ (0SI′ Φ→Φ)
∧E

0SI′ Φ→Φ
→ E

Φ
→ E

f
→ E

⊥

Theorem 6.2 has the same result of Corollary 3.2, even if they are
proved in different systems, SI′ and SIT . With the supposition that
SI′ ` ⊥→f, Theorem 6.1 says that neither Φ nor ¬Φ is derivable in
SI′ . Theorem 6.1 and 6.2 are relative to the suppositions of SI′ `f→
⊥ and SI′ ` ⊥ → f. A short investigation shows that SI′ ` f→⊥
implies that SI′ is complete, and SI′ `⊥→f leads to the consistency
of SI′ . The derivation below says that, for any ϕ in L, if f→⊥, then
0SI′ ϕ →¬ϕ . Also, 0SI′ ⊥ if ⊥→f.

[
0SI′ ϕ

]1
[ϕ]2

→ E
f [f→⊥]3

→ E
⊥
→ I,2¬ϕ
→ I,10SI′ ϕ →¬ϕ

→ I,3
(f→⊥)→ (0SI′ ϕ →¬ϕ)

[⊥]4 [⊥→f]5

→ E
f

→ I,40SI′ ⊥ → I,5
(⊥→f)→0SI′ ⊥

We call the left derivation DM and the right DN. Say, for any system
S, S is consistent if S 0⊥; otherwise, inconsistent. DM explains that
SI′ `f→⊥ implies that SI′ is complete and DN says that SI′ ` ⊥→
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f implies that SI′ is consistent. Theorem 6.1 and 6.2 show the relation
between completeness and consistency. When the language L of SI′

has a liar sentence, SI′ is not both complete and consistent.8

Without the assumption that f→⊥ in Theorem 6.2, there is no
inference to ⊥ from Φ↔0SI′ Φ. Likewise, Theorem 4.1 establishes
that an inference to ⊥ occurs if SITU `Ψ↔¬T (pΨq)∨USITU (pΨq)

and SITU ` f → ⊥. The inference to ⊥ exists only if the system
in question is complete. Since there is no reason for the intuitionist
that a correct intuitionistic formal system must be complete, an intu-
itionistic natural deduction system SI′ has the advantage to block the
inference to ⊥.

A plausible objection can be suggested by the fact that if SI′ `
Φ↔0SI′ Φ, then SI′ ` f. From the proof of Theorem 6.1, we have a
derivation D1 of 0SI′ Φ. Then, the following process proves the fact.

D1

0SI′ Φ

D1

0SI′ Φ

D0

Φ↔0SI′ Φ
de f

(Φ→0SI′ Φ)∧ (0SI′ Φ→Φ)
∧E

0SI′ Φ→Φ
→ E

Φ
→ E

f

Even if there is no inference to ⊥ from Φ↔0SI′ Φ, without the as-
sumption of SI′ ` f→⊥, the fact shows that there exists the infer-
ence to f. Be that as it may, the proof is dependent on the derivation

8Even in an axiomatic system, we can have the similar result. For example, Choi
(2017) argues that the lesson of Gödel’s proof is that any sufficiently strong and intu-
itively correct arithmetic cannot both be complete and consistent. That is, the threats
of inconsistency generated by the liar-type sentences or Gödel sentence would be
occured only in complete formal systems but not in others.
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D0 of Φ↔0SI′ Φ. If we do not suppose that SI′ has the derivation
D0, we have the following result.

Theorem 6.3. SI′ `0SI′ (Φ↔0SI′ Φ).

Proof. There exists an open derivation
[Φ↔0SI′ Φ]

D1

0SI′ Φ

.

[Φ]2
[Φ]2

[
Φ↔0SI′ Φ

]1

de f
(Φ→0SI′ Φ)∧ (0SI′ Φ→Φ)

∧E
Φ→0SI′ Φ

→ E
0SI′ Φ

→ E
f

→ I,20SI′ Φ

Then, we have a proof of 0SI′ (Φ↔0SI′ Φ) with the open derivation
D1.

[
Φ↔0SI′ Φ

]1

D1

0SI′ Φ

[
Φ↔0SI′ Φ

]1

D1

0SI′ Φ

[
Φ↔0SI′ Φ

]1

de f
(Φ→0SI′ Φ)∧ (0SI′ Φ→Φ)

∧E
0SI′ Φ→Φ

→ E
Φ
→ E

f
→ I,10SI′ (Φ↔0SI′ Φ)

With the derivation D0 of Φ ↔0SI′ Φ, the liar sentence Φ has a
privilege to guarantee that a prooflessness implies an existence of
a proof. The intuitionist can claim that any sentence which lacks a
proof-condition is unable to have a consequence, so the relation from
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0SI′ Φ to Φ is unacceptable. This is not a mere proposal to reject the
assumption that the liar-type sentences, such as Φ↔0SI′ Φ, can be
defined in the language of SI′ . Even though Φ↔0SI′ Φ can be defined
in the language, it is proved by Theorem 6.3 that Φ↔0SI′ Φ is not
derivable in SI′ . Therefore, with the expression of the prooflessness,
0SI′ , and the liar sentence in terms of it, there is no inference to ⊥ in
SI′ unless SI′ is complete.

7 Rules for the Double Meta-Level Negation
Elimination

In this paper, we do not claim that a genuine intuitionistic negation
for a given system S must be 0S. Rather, we focus on the case that a
negation, ¬, can express neither the prooflessness nor the intuition-
istic meanings of ‘not true.’ A classical interpretation of ‘ϕ is not
true’ is the same as ‘ϕ is false’ (or ‘¬ϕ is true’). A classical formal
system does not need to express the prooflessness, so the meta-level
negation, 0S, and the meta-level absurdity, f, are not necessary.

When the system SI′ has the meta-level negation and its language
has a liar sentence Φ which satisfies the relation Φ↔0SI′ Φ, SI′ has
no inference to ⊥ unless SI′ is complete. As we have seen in Section
6, SI′ prevents the inference to⊥. However, it does not change the fact
that the restriction of DNE does not block the inference to⊥. Tennant
(2017, p.284), considering the similar proof of Corollary 3.2, claims,
‘[LEM] need not play any role in the derivation of the explicit con-
tradiction [Φ∧¬Φ] from [Φ↔ ¬Φ].’ Also, the proof of Theorem
6.2 makes no use of ⊥C-rule and the assumption of f→ ⊥ does
not presume the use of it. DNE and LEM in the standard intuition-
istic natural deduction system may not concern about the meta-level
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negation (or prooflessness). Instead of DNE and LEM, we may con-
sider the Double Meta-Level Negation Elimination (DMNE) which
implicitly assumes that a given system is complete.

With their interpretations of truth, intuitionists, such as Michael
Dummett (1973) and Tennant (1997), have given philosophical argu-
ments against POB. For a given system S, POB guarantees that S is
complete since it says that every sentence ϕ in L has a proof or a
disproof. POB forces us to claim that S ` ϕ or S ` ¬ϕ . Hence, 0S ϕ

implies ¬ϕ and 0S ¬ϕ implies ϕ . Under the assumption of POB, we
may accept the following rules for f with respect to a given system
S.

[ϕ]1

D1

f
fC1,1¬ϕ

[0S ϕ]2

D2

f
fC2,2

ϕ

We add the rules above to SI′ and have SI′D. SI′D has the same result
of Theorem 6.2 without the assumption of f→⊥.

Theorem 7.1. If SI′D `Φ↔0SI′D Φ, then SI′D ` ⊥.

Proof. Suppose SI′D has a closed derivation of D0 of Φ↔0SI′D Φ.
We have a derivation D1 of Φ as follows:

[
0SI′D Φ

]1

[
0SI′D Φ

]1

D0

Φ↔0SI′D Φ
de f

(Φ→0SI′D Φ)∧ (0SI′D Φ→Φ)
∧E

0SI′D Φ→Φ
→ E

Φ
→ E

f
fC2,1

Φ
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Also, we have a derivation D2 of ¬Φ below.

[Φ]2
[Φ]2

D0

Φ↔0SI′D Φ
de f

(Φ→0SI′D Φ)∧ (0SI′D Φ→Φ)
∧E

Φ→0SI′D Φ
→ E

0SI′D Φ
→ E

f
fC1,2¬Φ

Having D1 and D2, we have a derivation of ⊥.

D1

Φ

D2

¬Φ
→ E

⊥

Similarly, if SITU has fC−rules, Theorem 4.1 is established without
the assumption of f→⊥. (See Appendix C.) fC2−rule has a similar
form of ⊥C−rule. We may regard fC1− and fC2−rules as the rules
for DMNE. fC−rules assume that a given system is complete and
such assumption is justified by POB. In this perspective, the rejection
of POB and DMNE can exclude the inference to ⊥ in SI′D (and in
SITUD of Appendix C.)

Consequently, when we regard ‘not true’ as prooflessness, our
discussions from Section 6 and 7 explicate that SI′ has no threat to
derive ⊥ unless SI′ is complete. Therefore, DMNE has a significant
role in deriving ⊥ and the restriction of DMNE blocks the inference
to ⊥.
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8 Conclusion

As is often said that, in a purely technical consideration, an intuition-
istic formal system has no advantage to rule out the inference to ⊥
from the liar-type paradoxes. We presume that a standard intuitionis-
tic natural deduction system is a primary candidate formal system for
intuitionistic logic. By the arguments from Section 3 to 5, we have
seen that intuitionistic systems, SIT and SITU , are not immune to the
liar-type paradoxes. Also, since the proofs of Corollary 3.2 and The-
orem 4.1 do not use ⊥C−rule, the restriction of ⊥C−rule (or DNE)
does not block the inference to ⊥ from the paradoxes.

In Section 6 and 7, we have argued that it is not a problem of intu-
itionistic strategies to the liar-type paradoxes, but the lack of expres-
sive power of SIT and SITU in that SIT and SITU are unable to express
an intuitionistic ‘not true.’ In the reinforced system SI′ having 0SI′

and f, there is no inference to ⊥ if SI′ is not complete. Furthermore,
as long as ‘not true’ is interpreted as prooflessness, we may claim that
no inference to ⊥ occur if DMNE is restricted in SI′ . Therefore, the
intuitionistic system SI′ can defend the challenge that intuitionistic
logic has no advantage to block the liar-type paradoxes.

It is a controversial point whether an intuitionistic system should
have a meta-level negation and a meta-level absurdity constant. As
the claim 1 of Appendix A shows, SI and SIT cannot distinguish be-
tween ‘ϕ has a disproof’ and ‘ϕ has no proof.’ It may be implicitly
assumed that SI and SIT are complete. If it is an intuitionist’s prob-
lem that a negation, ¬, in an intuitionistic system cannot express the
prooflessness, an application of the meta-level negation and the meta-
level absurdity to the system may be a right answer.

In sum, some extensions of the standard intuitionistic natural de-
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duction system are vulnerable to inconsistency from the liar-type
paradoxes, such as SIT and SITU . On the other hand, some, such as
SI′ , are not. Therefore, in a purely technical perspective, not all the
intuitionistic natural deduction system fail to rule out the inference
to ⊥ from the liar-type paradoxes.

Appendix A: Some Facts in SIT

In this appendix, we give a proof of the fact that if SIT `Φ↔¬T (pΦq),
then SIT ` ¬Φ↔ T (pΦq). The proof consists of three claims.

Claim 1. SIT ` ¬T (pΦq)↔ T (p¬Φq).

Proof.

[¬T (pΦq)]1
[Φ]2

T I
T (pΦq)

→ E
⊥
→ I,2¬Φ

T I
T (p¬Φq)

→ I,1¬T (pΦq)→ T (p¬Φq)

[T (pΦq)]3
T E

Φ

[T (p¬Φq)]4
T E

¬Φ
→ E

⊥
→ I,3¬T (pΦq)

→ I,4T (p¬Φq)→¬T (pΦq)
∧I

(¬T (pΦq)→ T (p¬Φq))∧ (T (p¬Φq)→¬T (pΦq))
de f

¬T (pΦq)↔ T (p¬Φq)

Claim 2. If SIT `Φ↔¬T (pΦq), then SIT ` T (pΦq)→¬Φ.

Proof. Suppose that SIT ` Φ↔ ¬T (pΦq). Then, we can use LI1−
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and LE1−inferences.

[T (pΦq)]1
[Φ]2

LI1¬T (pΦq)
→ E

⊥
→ I,2¬Φ

→ I,1T (pΦq)→¬Φ

Claim 3. If SIT `Φ↔¬T (pΦq), then SIT ` ¬Φ→ T (pΦq).

Proof. With the claim 1, we suppose that SIT ` Φ↔¬T (pΦq) and
use LI1− and LE1−inferences.

[¬Φ]1

T I
T (p¬Φq)

claim 1
¬T (pΦq)↔ T (p¬Φq)

de f
(¬T (pΦq)→ T (p¬Φq))∧ (T (p¬Φq)→¬T (pΦq))

∧E
T (p¬Φq)→¬T (pΦq))

→ E
¬T (pΦq)

LE1
Φ

T I
T (pΦq)

→ I,1¬Φ→ T (pΦq)

Therefore, by the three claims, if SIT ` Φ↔ ¬T (pΦq), then SIT `
¬Φ↔ T (pΦq).
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Appendix B: The Proof of ⊥ by LEM

From Theorem 3.1, we have the same result of Corollary 3.2 with the
application of LEM. We give a rule for LEM as follows.

[ϕ]1

D1

ψ

[¬ϕ]2

D2

ψ
LEM,1,2

ψ

Then, we have a derivation of ⊥.

[Φ]1
[Φ]1

theorem 3.1
Φ↔¬Φ

de f
(Φ→¬Φ)∧ (¬Φ→Φ)

∧E
Φ→¬Φ

→ E
¬Φ
→ E

⊥
[¬Φ]2

[¬Φ]2

theorem 3.1
Φ↔¬Φ

de f
(Φ→¬Φ)∧ (¬Φ→Φ)

∧E
¬Φ→Φ

→ E
Φ
→ E

⊥
LEM,1,2⊥

As we have seen in Corollary 3.2, however, the same result can be
given without the application of LEM and ⊥C−rule.

Appendix C: The Strengthened Liar Paradox and
fC−Rules

We have a system SITUD by adding fC−rules to SITU . Then, we have
the following theorem.

Theorem 8.1. If SITUD `Ψ↔¬T (pΨq)∨USITUD(pΨq), then SITUD `
⊥.

Proof. Suppose SITUD ` Ψ ↔ ¬T (pΨq)∨USITUD(pΨq). Then, we
can use SLI− and SLE−inferences. We have an open derivation D1
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of ⊥ from [USITUD(pΨq)] and [Ψ] below.

[USITU (pΨq)]4

[USITUD(pΨq)]3
de f

0SITUD Ψ∧ 0SITUD ¬Ψ
∧E

0SITUD Ψ [Ψ]1

→ E
f

fC1,3¬USITUD(pΨq)
→ E

⊥

With D1, the following derivation gives a derivation D2 of ¬Ψ.

[Ψ]1

SLI
¬T (pΨq)∨USITUD(pΨq)

[¬T (pΨq)]2
[Ψ]1

T I
T (pΨq)

→ E
⊥

[Ψ]1, [USITUD(Ψ)]4

D1

⊥
∨E,2,4⊥

→ I,1¬Ψ

From the claim 1 of Appendix A, we have a derivation DT of¬T (pΨq)↔
T (p¬Ψq) in SITUD. With the derivation D2 of ¬Ψ, the following pro-
cess gives a derivation D3 of Ψ in SITUD.

D2

¬Ψ
T I

T (p¬Ψq)

DT

¬T (pΨq)↔ T (p¬Ψq)
de f

(¬T (pΨq)→ T (p¬Ψq))∧ (T (p¬Ψq)→¬T (pΨq))
∧E

T (p¬Ψq)→¬T (pΨq)
→ E

¬T (pΨq)
∨I

¬T (pΨq)∨USITUD(pΨq)
SLE

Ψ

Having the derivation D2 and D3, we have the derivation of ⊥ in
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SITUD.
D2

¬Ψ

D3

Ψ
→ E

⊥
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거짓말쟁이 유형 역설과 직관주의 자연연역체계
최 승 락

순수하게 형식적인 견지에서 직관주의 논리는 거짓말쟁이 유형의 

역설을 다루는데 어떠한 이점도 없다고 여겨진다. 이 글에서 우리

는 표준 직관주의 자연연역체계가 거짓말쟁이 유형의 역설에 취약

함을 논할 것이다. 다시 말해, 거짓말쟁이 유형의 문장을 수용함이 

모순(⊥)을 도출하는 추론을 야기한다는 것이다. 이러한 결과는 이

중부정 제거규칙(DNE)에 대한 제약이 ⊥을 도출하는 추론을 막지 

못한다는 것을 보여준다. 하지만 이는 거짓말쟁이 유형의 역설에 

대한 직관주의적 접근법이 잘못된 것이 아니라 표준 자연연역 체계

의 표현력이 부족한 문제라고 할 수 있다.
우리는 주어진 체계 에 대한 메타-레벨 부정 연산자 ⊬와 메

타-레벨 모순 연산자 ⋏를 직관주의 체계에 도입할 것이다. 그리고 

체계의 완전성에 대한 가정 없이는 이 체계에서 ⊥에 대한 추론을 

얻을 수 없음을 보일 것이다. 또한 우리는 이중 메타-레벨 부정 제

거규칙(DMNE)을 고려할 것이다. 이 규칙은 체계의 완전성을 암묵

적으로 가정하며 DMNE에 대한 제약은 ⊥의 추론을 막을 수 있을 

것이다. 

주요어: 거짓말쟁이 역설, 강화된 거짓말쟁이 역설, 보복 거짓말, 
자연연역, 이중부정 제거규칙, 직관주의 논리. 




