DOI QR코드

DOI QR Code

Social Force Model을 활용한 보행자 대피행태 및 정보제공 시나리오분석: 세종시를 중심으로

Analysis of Pedestrian Evacuation Behaviors by the Evacuation Information Scenarios Using Social Force Model: Focusing on Sejong City

  • 투고 : 2017.11.28
  • 심사 : 2017.12.28
  • 발행 : 2018.02.28

초록

본 연구에서는 세종시의 생활권역을 대상으로 Social Force Model을 활용하여 재난상황에서의 정보제공 시나리오에 따른 보행자 대피행태와 정보제공효과를 추정하였다. 분석을 위한 재난상황은 지진 등의 긴급재난의 발생으로 인하여 보행자가 보도를 통해 신속히 대피해야 하는 상황을 가정하였다. 대상지역 네트워크의 최적화를 위해 최소 평균통행시간을 기준으로 각 존에 대한 최적 대피소를 선정하였으며 이를 바탕으로 정보제공 수준에 따른 대피 시나리오분석을 수행하였다. 분석결과, 보행자간의 상충으로 인한 평균 통행시간 및 지체시간이 증가하는 현상도 나타났으나 재해발생에 따른 대피유도정보를 제공할 경우 대피완료시간이 감소하는 등 대피의 효과가 입증되었다. 본 연구는 향후 도시지역의 보행자를 위한 재난방지 계획 등의 기초 연구로 활용될 것으로 기대된다.

This study aims to analyze region-based pedestrian evacuation behaviors and information offering effect using Social Force Model, which is micro simulation. All pedestrians were assumed to move to shelters through pedestrian roads according to guidance information at emergency situations, and the pedestrians were classified into adults and the handicapped. According to the results of the road network analysis and simulation analysis, the shelters to which pedestrians can move within the shortest time from each zone were selected as optimum shelters. From this study, the analysis showed that the information provision effects are informative even though total evacuation time increases due to the increase of pedestrian conflict. This study can be used as baseline data for urban area's pedestrian disaster prevention plans.

키워드

참고문헌

  1. Choi J. H. and Hong, W. H.(2013), "Two-way Evacuation Modelling and Human Behaviour Analysis from a Full-scale High-rise Apartment Data-set," Journal of the architectural institute of Korea planning & design, vol. 29, no. 10, pp.233-240. https://doi.org/10.5659/JAIK_PD.2013.29.10.233
  2. Choi K. H., Lee H. M., Cho K. H., Hwang D. Y. and Nam S. I.(2016), "A Study on the Improvement of Civil Defense Facilities for Civil Defense Residents," Korea Research Institute for National Strategy.
  3. D'Orazio M., Spalazzi L., Quagliarini E. and Bernardini G.(2014), "Agent-based model for earthquake pedestrians' evacuation in urban outdoor scenarios: Behavioural patterns definition and evacuation paths choice," Safety science, vol. 62, pp.450-465. https://doi.org/10.1016/j.ssci.2013.09.014
  4. Helbing D. and Molnar P.(1995), "Social force model for pedestrian dynamics," Physical review E, vol. 51, no. 5, pp.4282-4286. https://doi.org/10.1103/PhysRevE.51.4282
  5. Helbing D., Farkas I. J., Molnar P. and Vicsek T.(2002), "Simulation of pedestrian crowds in normal and evacuation situations," Pedestrian and evacuation dynamics, vol. 21, no. 2, pp.21-58.
  6. Hong H. R., Seo D. G., Hasemi Yuji. and Kown Y. J.(2011), "A study on the walking speed of crowd for safety evacuation design of the elderly," Journal of Korean Institute of Fire Science & Engineering, KIFSE, vol. 25, no. 1, pp.19-26.
  7. Itoigawa E.(2013), "Urban Risk Management," Corona, Japan.
  8. Kim M. K., Kang S. H., Kim S. P. and Sohn H. K.(2016), "A Spatial Analysis of Shelter Capacity Using Floating Population," Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, vol. 34, no. 1, pp.1-10. https://doi.org/10.7848/ksgpc.2016.34.1.1
  9. Lee J.(2013), "A Basic Study on Different Waking Behaviors of Pedestrians and Evacuees," Journal of Transport Research, vol. 20, no. 1, pp.43-54.
  10. Mas E., Adriano B. and Koshimura S.(2013), "An integrated simulation of tsunami hazard and human evacuation in La Punta, Peru," Journal of Disaster Research, vol. 8, no. 2, pp.285-295. https://doi.org/10.20965/jdr.2013.p0285
  11. Nam H. W., Kwak S. Y. and Jun C. M.(2016), "A Study on Comparison of Improved Floor Field Model and Other Evacuation Models," Journal of the Korea Society for Simulation, vol. 25, no. 3, pp.41-51. https://doi.org/10.9709/JKSS.2016.25.3.041
  12. Pelechano N. and Malkawi A.(2008), "Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches," Automation in construction, vol. 17, no. 4, pp.377-385. https://doi.org/10.1016/j.autcon.2007.06.005
  13. Vermuyten H., Belien J., De Boeck L., Reniers G. and Wauters T.(2016), "A review of optimisation models for pedestrian evacuation and design problems," Safety science, vol. 87, pp.167-178.
  14. Wei-Guo S., Yan-Fei Y., Bing-Hong W. and Wei-Cheng F.(2006), "Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model," Physica A: Statistical Mechanics and its Applications, vol. 371, no. 2, pp.658-666. https://doi.org/10.1016/j.physa.2006.03.027
  15. Wood N. J. and Schmidtlein M. C.(2013), "Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety," Natural hazards, vol. 65, no. 3, pp.1603-1628. https://doi.org/10.1007/s11069-012-0434-8
  16. Yamada F., Kakimoto R., Yamamoto M., Fujimi T. and Tanaka, N.(2011), "Implementation of community flood risk communication in Kumamoto, Japan," Journal of advanced transportation, vol. 45, no. 2, pp.117-128. https://doi.org/10.1002/atr.119
  17. Yang X., Dong H., Wang Q., Chen Y. and Hu X.(2014), "Guided crowd dynamics via modified social force model," Physica A: Statistical Mechanics and its Applications, vol. 411, pp.63-73. https://doi.org/10.1016/j.physa.2014.05.068

피인용 문헌

  1. Examining Flood Evacuation Behaviors Using an Agent-based Model vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.163
  2. 다중밀집시설의 사회적 거리 유지를 위한 Social Force Model 구축방안 vol.19, pp.4, 2018, https://doi.org/10.12815/kits.2020.19.4.1