DOI QR코드

DOI QR Code

Synthesis of Rhamnazin and Ombuin as Methylated Metabolites of Quercetin

케르세틴의 메틸화된 대사체인 람나진과 옴부인의 합성

  • Jang, Jongyun (Department of Pharmaceutical Science and Technology, Catholic University of Daegu) ;
  • Kang, Dong Wook (Department of Pharmaceutical Science and Technology, Catholic University of Daegu)
  • 장종윤 (대구가톨릭대학교 바이오메디대학 제약산업공학전공) ;
  • 강동욱 (대구가톨릭대학교 바이오메디대학 제약산업공학전공)
  • Received : 2017.12.05
  • Accepted : 2017.12.12
  • Published : 2018.02.20

Abstract

The methylated metabolites of quercetin, rhamnazin and ombuin are highly likely to develop as anticancer and anti-inflammatory agents. In this study, we synthesized rhamnazin through selective methylation of quercetin hydroxyl group, which has not been reported so far. In addition, a new synthetic method was developed to correct the problems of previous synthetic method of ombuin, one of the methylated metabolites of quercetin.

케르세틴의 메틸화된 대사체인 람나진과 옴부인은 항암제와 항염증제로서의 개발 가능성이 높은 물질이다. 본 연구에서는 케르세틴 수산기의 선택적인 메틸화를 통하여 기존의 합성법이 알려지지 않은 람나진의 합성법을 개발하였다. 그리고 케르세틴의 메틸화된 대사체 중의 하나인 옴부인의 기존 합성법의 문제점을 수정한 새로운 합성법을 제시하였다.

Keywords

References

  1. Packer, L.; Flavonoids and other Polyphenols. Methods in Enzymology, Ed.; Academic: San Diego, 2001; Vol. 335.
  2. Pietta, P. G. J. Nat. Prod. 2000, 63, 1035. https://doi.org/10.1021/np9904509
  3. Choi, J. A.; Kim, J. Y.; Lee, J. Y.; Kang, C. M.; Kwon, H. J.; Yoo, Y. D.; Kim, T. W.; Lee, Y. S.; Lee, S. J. Int. J. Oncol. 2001, 19, 837.
  4. Yoshizumi, M.; Tsuchiya, K.; Kirima, K.; Kyaw, M.; Suzaki, Y.; Tamaki, T. Mol. Pharmacol. 2001, 60, 656.
  5. Schroeter, H.; Spencer, J. P. E.; Rice-Evans, C.; Williams, R. J. Biochem. J. 2001, 358, 547. https://doi.org/10.1042/bj3580547
  6. Wang, H. K. Expert Opin. Investig. Drugs, 2000, 9, 2103. https://doi.org/10.1517/13543784.9.9.2103
  7. Lamson, D. W.; Brignall, M. S. Altern. Med. Rev. 2000, 5, 196.
  8. Ader, P.; Wessmann, A.; Wolffram, S. Free Rad. Biol. Med. 2000, 28, 1056. https://doi.org/10.1016/S0891-5849(00)00195-7
  9. Manach, C.; Texier, O.; Morand, C.; Crespy, V.; Regerat, F.; Demigne, C.; Remesy, C. Free Rad. Biol. Med. 1999, 27, 1259. https://doi.org/10.1016/S0891-5849(99)00159-8
  10. Boulton, D. W.; Walle, U. K.; Walle, T. J. Pharm. Pharmacol. 1999, 51, 353. https://doi.org/10.1211/0022357991772367
  11. O'Leary, K. A.; Day, A. J.; Needs, P. W.; Sly, W. S.; O'Brien, N. M.; Williamson, G. FEBS Lett. 2001, 503, 103. https://doi.org/10.1016/S0014-5793(01)02684-9
  12. Yu, Y.; Cai, W.; Pei, C.G.; Shao, Y. Biochem. Biophys. Res. Commun., 2015, 458, 913. https://doi.org/10.1016/j.bbrc.2015.02.059
  13. Rao, Y. K.; Fang, S. H.; Tzeng, Y. M. Phytother. Res., 2008, 22, 957. https://doi.org/10.1002/ptr.2448
  14. Bouktaib, M.; Lebrun, S.; Atmani, A.; Ronaldo, C. Tetrahydron, 2002, 58, 10001. https://doi.org/10.1016/S0040-4020(02)01306-6
  15. Rao, K. V.; Owoyale, J. A. J. Heterocycl. Chem. 1976, 13, 1293. https://doi.org/10.1002/jhet.5570130629
  16. Li, N. G.; Wang, J. X.; Liu, X. R.; Lin, C. J.; You, Q. D.; Guo, Q. L. Tetrahedron Lett. 2007, 48, 6586. https://doi.org/10.1016/j.tetlet.2007.07.005
  17. Shi, Z. H.; Li, N. G.; Tang, Y. P.; Li, W.; Yin, L.; Yang, J. P.; Tang, H.; Duan, J. A. Eur. J. Med. Chem., 2012, 54, 210. https://doi.org/10.1016/j.ejmech.2012.04.044