DOI QR코드

DOI QR Code

Analysis of Dosimeter Error and Need for Calibration Guideline by Comparing the Dose Area of the Built-in Dose Area Product and the Moving Dose Area Product when using Automatic Exposure Controller in Intervention

인터벤션에서 자동노출제어장치 이용 시 내장형 면적 선량계와 이동형 면적 선량계의 면적선량 비교를 통한 선량계 오차분석과 교정지침 필요성 연구

  • 최지안 (경희대학교병원 영상의학과) ;
  • 황준호 (경희대학교병원 영상의학과/고려대학교 의용과학대학원 의학물리과) ;
  • 이경배 (경희대학교병원 영상의학과)
  • Received : 2018.09.12
  • Accepted : 2018.10.15
  • Published : 2018.11.28

Abstract

The purpose of this study was to analyze the errors of the built - in dose area product and the calibrated moving dose area product when using automatic exposure controller of the interventional equipment. And then, the importance of the dosimeter calibration and the necessity of the calibration guideline were investigated. The experimental method was to assemble the phantom into Thin, Normal, and Heavy Adult according to the NEMA Phantom manual and to measure the dose area with the built-in dose area product and the moving dose area product. As a result, in all thicknesses, the built-in dose area product showed higher doses than the moving dose area product, and the thicker the thickness, the larger the difference. In addition, paired t-test was performed for each item and there was a significant difference in each item between p<0.05. In conclusion, considering the intervention which is highly exposed to the radiation exposure, it is that we have to know the accurate dose when using the AEC of the equipment. And there is no calibration guide for the built-in dose area meter, thus calibration guidelines should be prepared.

본 연구는 인터벤션 장비의 자동노출제어장치(Automatic Exposure Controller, AEC) 이용 시 내장형 면적 선량계와 교정된 이동형 면적 선량계의 오차를 분석하여 선량계 교정의 중요성과 교정지침의 필요성을 알아보고자 하였다. 실험방법은 NEMA 팬텀의 메뉴얼에 따라 팬텀을 Thin, Normal, Heavy Adult로 조립하고 내장형 면적 선량계와 이동형 면적 선량계로 면적선량을 측정하였다. 그 결과 모든 두께에서 내장형 면적 선량계가 이동형 면적 선량계보다 나타내는 선량 값이 높았고 두께가 두꺼울수록 그 차이가 커졌다. 또한 각 항목에 대하여 paired t-test를 시행하였고, 그 결과 각 항목은 p<0.05로 유의한 차이가 있었다. 결론적으로 피폭에 많이 노출되는 인터벤션 시술을 고려해 볼 때, 장비의 자동노출제어장치 사용 시 정확한 선량 파악 여부가 중요하고 현재 내장된 면적 선량계에 대한 교정지침이 없으므로 교정지침을 마련하는 것이 필요하다.

Keywords

CCTHCV_2018_v18n11_508_f0001.png 이미지

그림 1. ALLURA XPER FD 20/10 Biplane

CCTHCV_2018_v18n11_508_f0002.png 이미지

그림 2. 내장형 면적 선량계와 이동형 면적 선량계

CCTHCV_2018_v18n11_508_f0003.png 이미지

그림 3. 분해능 측정을 위한 NEMA 팬텀의 설정

CCTHCV_2018_v18n11_508_f0004.png 이미지

그림 4. NEMA Phantom의 배열

CCTHCV_2018_v18n11_508_f0005.png 이미지

그림 5. 공간 분해능과 저 대조도 분해능 영상평가

표 1. 공간 분해능과 저 대조도 분해능의 평균과 표준편차

CCTHCV_2018_v18n11_508_t0001.png 이미지

표 2. 두께에 따른 내장형 면적 선량계와 이동형 면적 선량계의 선량 오차 비교

CCTHCV_2018_v18n11_508_t0002.png 이미지

표 3. 공간 분해능과 저 대조도 분해능 측정값

CCTHCV_2018_v18n11_508_t0003.png 이미지

References

  1. IAEA, IAEA Safety Series No. 115, 1996.
  2. ICRP, ICRP Committee 3, 2002.
  3. IAEA, IAEA Safety Series No. 115-I, 1994.
  4. http://www.icrp.org/
  5. ICRP, ICRP Publication 60, 1990.
  6. ICRP, ICRP Publication 103, 2007.
  7. ICRP, ICRP Publication 85, 2000.
  8. J. Crowhurst, M. Whitby, D. Thiele, T. Halligan, A. Westerink, S. Crown, and J. Milne, “Radiation Dose in Coronary Angiography and Intervention : Initial Result from the Establishment of a Multi Center Diagnostic Reference Level in Queensland Public Hospital,” J. of Medical Radiation Sciences, Vol. 61, No. 3, pp. 135-141, 2014. https://doi.org/10.1002/jmrs.67
  9. M. Morris, Z. Salih, J. Wynn, Z. Ahmed, B. Brown, and J. Wright, “Patient Radiation Dose during Fluoroscopically Guided Biventricular Device Implantation,” Acta Cardiology, Vol. 69, No. 5, pp. 491-495, 2014. https://doi.org/10.1080/AC.69.5.3044875
  10. ICRP, ICRP Publication 135, 2017.
  11. J. H. Hwang and K. B. Lee, “A Study on the Usefulness of Glass Dosimeter in the Evaluation of Absorbed Dose by Comparing the Doses of Multi-purpose Dosimeter and Glass Dosimeter Using Kerma with PCXMC 2.0 in DR(Digital Radiography),” J. of the Korea Contents Association, Vol. 17, No. 9, pp. 292-299, 2017. https://doi.org/10.5392/JKCA.2017.17.09.292
  12. ICRP, ICRP Publication 93, 2004.
  13. J. H. Hwang, K. M. Jeong, H. S. Kim, B. S. Kang, and K. B. Lee, “Dose Reduction According to the Exposure Condition in Intervention Procedure : Focus on the Change of Dose Area and Image Quality,” J. of Radiological Science and Technology, Vol. 40, No. 3, pp. 393-400, 2017. https://doi.org/10.17946/JRST.2017.40.3.06
  14. J. H. Hwang, K. M. Jeong, J. A. Choi, H. S. Kim, and K. B. Lee, “A Study on Dose Reduction Method according to Slice Thickness Change using Automatic Exposure Controller and Manual Exposure in Intervention,” J. of Radiological Science and Technology, Vol. 41, No. 2, pp. 115-122, 2018. https://doi.org/10.17946/JRST.2018.41.2.115
  15. J. H. Choi, G. J. Kang, and S. G. Chang, “Comparison on the Dosimetry of TLD and PLD by Dose Area Product,” J. of the Korea Contents Association, Vol. 12, No. 3, pp. 244-250, 2012. https://doi.org/10.5392/JKCA.2012.12.03.244
  16. IEC, IEC 60601-1 : Medical Electrical Equipment-Part 1 : General Requirements for Basic Safety and Essential Performance, 2012.
  17. IEC, IEC 60601-1-3 : Medical Electrical Equipment-Part 1 : General Requirements for Safety-3. Collateral Standard : General Requirements for Radiation Protection in Diagnostic X-ray Equipment, 2008.
  18. IEC, IEC 60601-2-54 : Medical Electrical Equipment-Part 2-54 : Particular Requirements for the Basic Safety and Essential Performance of X-ray Equipment for Radiography and Radioscopy, 2009.
  19. Y. H. Roh and J. M. Kim, “The Tendency of Medical Electrical Equipment - IEC 60601-2-54 : Particular Requirements for the Basic Safety and Essential Performance of X-ray Equipment for Radiography and Radioscopy,” J. of Radiological Science and Technology, Vol. 38, No. 4, pp. 331-336, 2015. https://doi.org/10.17946/JRST.2015.38.4.01
  20. J. H. Hwang and K. B. Lee, “A Study on the Quantitative Analysis Method through the Absorbed Dose and the Histogram in the Performance Evaluation of the Detector according to the Sensitivity Change of Auto Exposure Control(AEC) in DR(Digital Radiography),” J. of the Korea Contents Association, Vol. 18, No. 1, pp. 232-240, 2018. https://doi.org/10.5392/JKCA.2018.18.01.232
  21. K. M. Lee, B. S. Kang, H. H. Park, and G. Y. Lee, “Analyzed of Dose Area Product in Error Rate,” The Korean Society of Cardio-Vascular Interventional Technology, Vol. 15, No. 1, pp. 128-134, 2012.
  22. H. Bak, J. S. Jeon, Y. W. Kim, and S. J. Jang, “Dose Assessment according to Differences in the Content of Iodine in Contrast Media used in Interventional Procedure,” J. of the Korea Contents Association, Vol. 14, No. 3, pp. 337-345, 2014. https://doi.org/10.5392/JKCA.2014.14.03.337
  23. H. S. Park, C. H. Lim, B. S. Kang, I. G. You, and H. R. Jung, “A Study on the Evaluation of Patient Dose in Interventional Radiology,” J. of Radiological Science and Technology, Vol. 35, No. 4, pp. 299-308, 2012.
  24. B. S. Kang, J. H. Son, and S. C. Kim, “Establishment of Quality Control System for Angiographic Unit,” J. of the Korea Contents Association, Vol. 11, No. 1, pp. 236-244, 2011. https://doi.org/10.5392/JKCA.2011.11.1.236
  25. H. S. Lee, S. G. Han, Y. H. Roh, H. J. Lim, J. M. Kim, J. U. Kim, H. S. Chae, and Y. S. Yoon, “Performance Evaluation of Domestic Prototype Dose Area Product Meter SFT-1,” J. of Radiological Science and Technology, Vol. 39, No. 3, pp. 435-441, 2016. https://doi.org/10.17946/JRST.2016.39.3.19
  26. C. N. Ionita, A. Dohatcu, A. Jain, C. Keleshis, K. R. Hoffmann, D. R. Bednarek, and S. Rudin, "Modification of the NEMA XR21-2000 Cardiac Phantom for Testing of Imaging Systems used in Endovascular Image Guided Interventions," Physics of Medical Imaging, Vol. 7258, p.72584R, 2009.
  27. B. Wiesinger, S. Kirchner, G. Blumenstock, K. Herz, J. Schmehl, C. D. Claussen, and J. Wiskirchen, “Difference in Dose Area Product between Analog Image Intensifier and Digital Flat Panel Detector in Peripheral Angiography and the Effect of BMI,” RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin, Vol. 185, No. 2, pp. 153-159, 2013.
  28. C. S. Moore, T. J. Wood, G. Avery, S. Balcam, L. Needler, H. Joshi, J. R. Saunderson, and A. W. Beavis, “Automatic Exposure Control Calibration and Optimization for Abdomen, Pelvis and Lumbar Spine Imaging with an Agfa Computed Radiography System,” Physics in Medicine and Biology, Vol. 61, No. 21, pp. N551-N564, 2016. https://doi.org/10.1088/0031-9155/61/21/N551
  29. J. S. Lee, S. J. Ko, S. S. Kang, J. H. Kim, D. H. Kim, and C. S. Kim, “Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image,” J. of the Korea Contents Association, Vol. 13, No. 8, pp. 275-283, 2013. https://doi.org/10.5392/JKCA.2013.13.08.275