References
- Logan BE. Peer reviewed: Extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol. 2004;38:160A-167A. https://doi.org/10.1021/es040468s
- Lovley DR. Bug juice: Harvesting electricity with microorganisms. Nat. Rev. Microbiol. 2006;4:497-508. https://doi.org/10.1038/nrmicro1442
- Rabaey K, Verstraete W. Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 2005;23:291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
- Jung SP. Practical implementation of microbial fuel cells for bioelectrochemical wastewater treatment. J. Korean Soc. Urban Environ. 2013;13:93-100.
- Lee T, Okamoto A, Jung S, et al. Microbial electrochemical technologies producing electricity and valuable chemicals from biodegradation of waste organic matters. In: Yates M NC, Miller R, Pillai S, eds. Manual of environmental microbiology. 4th ed. American Society of Microbiology; 2016. p. 5.1.4-1-5.1.4-14.
- Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells: Methodology and technology. Environm. Sci. Technol. 2006;40:5181-5192. https://doi.org/10.1021/es0605016
- Logan BE, Regan JM. Microbial fuel cells-challenges and applications. Environ. Sci. Technol. 2006;40:5172-5180. https://doi.org/10.1021/es0627592
- Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004;38:4900-4904. https://doi.org/10.1021/es049422p
- Zhang F, Saito T, Cheng S, Hickner MA, Logan BE. Microbial fuel cell cathodes with poly (dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environ. Sci. Technol. 2010;44:1490-1495. https://doi.org/10.1021/es903009d
- Zuo Y, Cheng S, Logan BE. Ion exchange membrane cathodes for scalable microbial fuel cells. Environ. Sci. Technol. 2008;42:6967-6972. https://doi.org/10.1021/es801055r
- Zhang F, Merrill MD, Tokash JC, et al. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors. J. Power Sources 2011;196:1097-1102. https://doi.org/10.1016/j.jpowsour.2010.08.011
- Dong H, Yu H, Wang X. Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells. Environ. Sci. Technol. 2012;46:13009-13015. https://doi.org/10.1021/es303619a
-
Wang X, Feng C, Ding N, et al. Accelerated
$OH^-$ transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells. Environ. Sci. Technol. 2014;48:4191-4198. https://doi.org/10.1021/es5002506 - Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 2004;38:2281-2285. https://doi.org/10.1021/es034923g
- Cheng S, Liu H, Logan BE. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 2006;40:364-369. https://doi.org/10.1021/es0512071
- Kim BH, Chang IS, Gadd GM. Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol. 2007;76:485-494. https://doi.org/10.1007/s00253-007-1027-4
- Yuan H, Hou Y, Abu-Reesh IM, Chen J, He Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horiz. 2016;3:382-401. https://doi.org/10.1039/C6MH00093B
- Cheng S, Liu H, Logan BE. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006;8:489-494. https://doi.org/10.1016/j.elecom.2006.01.010
- Dong H, Yu H, Wang X, Zhou Q, Feng J. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Res. 2012;46:5777-5787. https://doi.org/10.1016/j.watres.2012.08.005
- Logan B, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007;41:3341-3346. https://doi.org/10.1021/es062644y
- Koo B, Kang H, Nam T, Kim E, Son S, Jung SP. Performance enhancement of a microbial fuel cell by physico-chemical treatments of activated-carbon catalyst of an air cathode. J. Korean Soc. Urban Environ. 2016;16:431-439.
- Middaugh J, Cheng S, Liu W, Wagner R. How to make cathodes with a diffusion layer for single-chamber microbial fuel cells. 2006.
- Escapa A, San-Martin M, Mateos R, Moran A. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations. Bioresour. Technol. 2015;180:72-78. https://doi.org/10.1016/j.biortech.2014.12.096
- Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004;38:4040-4046. https://doi.org/10.1021/es0499344
- Kang H, Jeong J, Gupta PL, Jung SP. Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells. Int. J. Hydrogen Energ. 2017;42:27693-27700. https://doi.org/10.1016/j.ijhydene.2017.06.181
- Nam T, Son S, Koo B, et al. Comparative evaluation of performance and electrochemistry of microbial fuel cells with different anode structures and materials. Int. J. Hydrogen Energ. 2017;42:27677-27684. https://doi.org/10.1016/j.ijhydene.2017.07.180
- Feng Y, Yang Q, Wang X, Logan BE. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources 2010;195:1841-1844. https://doi.org/10.1016/j.jpowsour.2009.10.030
- Jung S. Impedance analysis of Geobacter sulfurreducens PCA, Shewanella oneidensis MR-1, and their coculture in bioeletrochemical systems. Int. J. Electrochem. Sci. 2012;7:11091-11100.
- Jung S, Mench MM, Regan JM. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ. Sci. Technol. 2011;45:9069-9074. https://doi.org/10.1021/es201737g
- Jung S, Regan JM. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl. Microbiol. Biotechnol. 2007;77:393-402. https://doi.org/10.1007/s00253-007-1162-y
- Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006;40:3388-3394. https://doi.org/10.1021/es0525511
- Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 2008;42:8101-8107. https://doi.org/10.1021/es801229j
- Le Bozec N, Compere C, L'Her M, Laouenan A, Costa D, Marcus P. Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater. Corros. Sci. 2001;43:765-786. https://doi.org/10.1016/S0010-938X(00)00113-X
- Kim YP, Fregonese M, Mazille H, Feron D, Santarini G. Study of oxygen reduction on stainless steel surfaces and its contribution to acoustic emission recorded during corrosion processes. Corros. Sci. 2006;48:3945-3959. https://doi.org/10.1016/j.corsci.2006.03.006
- Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochim. Acta. 2007;53:468-473. https://doi.org/10.1016/j.electacta.2007.06.069
- Jung S, Oh S-E, Lee J, et al. Impedance and thermodynamic analysis of bioanode, abiotic anode, and riboflavin-amended anode in microbial fuel cells. Bull. Korean Chem. Soc. 2012;33:3349-3354. https://doi.org/10.5012/bkcs.2012.33.10.3349
- Logan BE, Wallack MJ, Kim K-Y, He W, Feng Y, Saikaly PE. Assessment of microbial fuel cell configurations and power densities. Environ. Sci. Technol. Lett. 2015;2:206-214. https://doi.org/10.1021/acs.estlett.5b00180
Cited by
- 침지형 미생물연료전지에서 유입 COD 및 HRT 변화가 하수 수준의 질소 제거에 미치는 영향 vol.40, pp.8, 2018, https://doi.org/10.4491/ksee.2018.40.8.314
- PtFe catalysts supported on hierarchical porous carbon toward oxygen reduction reaction in microbial fuel cells vol.23, pp.9, 2018, https://doi.org/10.1007/s10008-019-04367-6
- Simple and Precise Approach for Determination of Ohmic Contribution of Diaphragms in Alkaline Water Electrolysis vol.9, pp.10, 2019, https://doi.org/10.3390/membranes9100129
- Recent Trends of Oxygen Reduction Catalysts in Microbial Fuel Cells: A Review vol.41, pp.11, 2019, https://doi.org/10.4491/ksee.2019.41.11.657
- CH4 control and associated microbial process from constructed wetland (CW) by microbial fuel cells (MFC) vol.260, pp.None, 2018, https://doi.org/10.1016/j.jenvman.2020.110071
- Electric power generation from sediment microbial fuel cells with graphite rod array anode vol.25, pp.2, 2018, https://doi.org/10.4491/eer.2018.361
- Agricultural Wastes For Electricity Generation Using Microbial Fuel Cells vol.14, pp.1, 2018, https://doi.org/10.2174/1874070702014010052
- 하폐수처리에서 질소 제거를 위한 미생물 전기화학 기술의 동향 vol.34, pp.5, 2018, https://doi.org/10.11001/jksww.2020.34.5.345
- Oxygen-deficient TiO2 decorated carbon paper as advanced anodes for microbial fuel cells vol.366, pp.None, 2018, https://doi.org/10.1016/j.electacta.2020.137468
- Long-term electricity generation and denitrification performance of MFCs with different exchange membranes and electrode materials vol.140, pp.None, 2021, https://doi.org/10.1016/j.bioelechem.2021.107748
- Polypropylene biofilm carrier and fabricated stainless steel mesh supporting activated carbon: Integrated configuration for performances enhancement of microbial fuel cell vol.46, pp.None, 2021, https://doi.org/10.1016/j.seta.2021.101268
- Recent Trends and Prospects of Microbial Fuel Cell Technology for Energy Positive Wastewater Treatment Plants Treating Organic Waste Resources vol.43, pp.10, 2018, https://doi.org/10.4491/ksee.2021.43.10.623
- Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation vol.424, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.130388
- Novel Ti/TiHx/SnO2-Sb2O5-NiO-CNT electrode for electrochemical Ozone Generation for degradation of toxic textile azo dyes vol.27, pp.3, 2018, https://doi.org/10.4491/eer.2020.429