References
- Choi HJ. Application of methyl-esterified sericite for harvesting microalgae species. J. Environ. Chem. Eng. 2016;4:3593-3600. https://doi.org/10.1016/j.jece.2016.08.005
-
Gu N, Gao J, Li H, Wu Y, Ma Y, Wang K. Montmorillonite-supported with
$Cu_2O$ nanoparticles for damage and removal of Microcystis aeruginosa under visible light. Appl. Clay Sci. 2016;132-133:79-89. https://doi.org/10.1016/j.clay.2016.05.017 - Paerl P. Climate Change: Links to global expansion of harmful cyanobacteria. Water Res. 2012;46:1349-1363. https://doi.org/10.1016/j.watres.2011.08.002
- Pei HY, Ma CX, Hu WR, Sun F. The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes. Bioresour. Technol. 2014;151:314-322. https://doi.org/10.1016/j.biortech.2013.10.077
-
Qi J, Lan H, Miao S, et al.
$KMnO_4$ -Fe(II) Pretreatment to enhance Microcystis aeruginosa removal by aluminum coagulation: Does it work after long distance transportation? Water Res. 2016;88:127-134. https://doi.org/10.1016/j.watres.2015.10.004 - Chen JZ, Zhang HY, Han ZP, Ye JY, Liu Z. The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecol. Eng. 2012;42:130-133. https://doi.org/10.1016/j.ecoleng.2012.02.021
- Meullemiestre A, Petitcolas E, Maache-Rezzoug Z, Chemat F, Rezzoug SA. Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments. Ultrason Sonochem. 2016;28:230-239. https://doi.org/10.1016/j.ultsonch.2015.07.022
- Choi HJ. Optimization for microalgae harvesting using Mg-sericite flocculant. J. Korean Soc. Water Environ. 2015;31:328-333. https://doi.org/10.15681/KSWE.2015.31.3.328
- Sengco MR, Anderson DM. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 2004;51:169-172. https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
- Choi HJ. Effect of Mg-sericite flocculant for treatment of brewery wastewater. Appl. Clay Sci. 2015;115:145-149. https://doi.org/10.1016/j.clay.2015.07.037
- Lalhmunsiama, Tiwari D, Lee SM. Surface-functionalized activated sericite for the simultaneous removal of cadmium and phenol from aqueous solutions: Mechanistic insights. Chem. Eng. J. 2016;283:1414-1423. https://doi.org/10.1016/j.cej.2015.08.072
- Zeng WC, Zhang Z, Gao H, Jia LR, He Q. Chemical composition, antioxidant and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J. Food Sci. 2012;77:824-829. https://doi.org/10.1111/j.1750-3841.2012.02767.x
- Choi HJ. Removal of Microcystis aeruginosa using pine needle extracts. J. Korea Soc. Water Environ. 2017;33:8-14.
- Zeng WC, He Q, Sun Q, Zhong K, Gao H. Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara. Int. J. Food Microbiol. 2012;153:78-84. https://doi.org/10.1016/j.ijfoodmicro.2011.10.019
- Wu YP, Liang X, Liu XY, et al. Cedrus deodara pine needle as a potential source of natural antioxidants: Bioactive constituents and antioxidant activities. J. Funct. Foods 2015;14:605-612. https://doi.org/10.1016/j.jff.2015.02.023
- Zeng WC, Zhang Z, Jia LR. Antioxidant activity and characterization of antioxidant polysaccharides from pine needle (Cedrus deodara). Carbohydr. Polym. 2014;108:58-64. https://doi.org/10.1016/j.carbpol.2014.03.022
- Assefi M, Davar F, Hadadzadeh H. Green synthesis of nanosilica by thermal decomposition of pine cones and pine needles. Adv. Powder Technol. 2015;26:1583-1589. https://doi.org/10.1016/j.apt.2015.09.004
- Bhattacharyya K, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008;140:114-131. https://doi.org/10.1016/j.cis.2007.12.008
- Zamparas M, Gianni A, Stathi P, Deligiannakis Y, Zacharias I. Removal of phosphate from natural waters using innovative modified bentonites. Appl. Clay Sci. 2012;62-63:101-106. https://doi.org/10.1016/j.clay.2012.04.020
- Liu G, Fan C, Zhong J, et al. Using hexadecyl trimethyl ammonium bromide (CTAB) modified clays to clean the Microcystis aeruginosa blooms in lake Taihu, China. Harmful Algae 2010;9:413-418. https://doi.org/10.1016/j.hal.2010.02.004
- Watson SB, Whitton BA, Higgins SN, Paerl HW, Brooks BW, Wehr JD. Chapter 20 - Harmful algal blooms. In: Wehr JD, Sheath RG, Kociolek RP, eds. Freshwater algae of North America. 2nd ed. Academic Press; 2015. p. 873-920.
- Kong Z, Liu Z, Ding B. Study on the antimutagenic effect of pine needle extract. Mutation Res. Lett. 1995;347:101-104. https://doi.org/10.1016/0165-7992(95)00026-7
- Kim YS, Shin DH. Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts. Food Microbiol. 2005;22:37-45. https://doi.org/10.1016/j.fm.2004.05.002
- Teissier G. Growth of bacterial populations and the available substrate concentration. Rev. Sci. Instrum. 1942;3208:209-214.
- Luong JHT. Generalization of monod kinetics for analysis of growth data with substrate inhibition. Biotechnol. Bioeng. 1987;29:242-248. https://doi.org/10.1002/bit.260290215
- Halmi MIE, Shukor MS, Shukor MY. Evaluation of several mathematical models for fitting the growth and kinetics of the catechol-degrading Candida parapsilopsis: Part 2. J. Environ. Bioremed. Toxicol. 2014;2:53-57.
- Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modeling of the degradation kinetics of Bacillus cereus grown on phenol. J. Environ. Bioremed. Toxicol. 2014;2:1-5.
- Li J, Liu Y, Zhang P, et al. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers. J. Environ. Sci. 2016;43:40-47. https://doi.org/10.1016/j.jes.2015.08.020
- McGowan S. Chapter 2 - Algal blooms. In: Sivanpillai R, Shroder Jr. JF, eds. Biological and environmental hazards, risks, and disasters. Elsevier; 2016. p. 5-43
- Mahajan D, Bhat ZF, Kumar S. Pine needles (Cedrus deodara (Roxb.) Loud.) extract as a novel preservative in cheese. Food Packag. Shelf Life 2016;7:20-25. https://doi.org/10.1016/j.fpsl.2016.01.001
- Wang Z, Chen Y, Xie P, Shang R, Ma J. Removal of Microcystis aeruginosa by UV-activated persulfate: Performance and characteristics. Chem. Eng. J. 2016;300:245-253. https://doi.org/10.1016/j.cej.2016.04.125
-
Carvalho MS, Alves BRR, Silva MF, Bergamasco R, Coral LA, Bassetti FJ.
$CaCl_2$ applied to the extraction of Moringa oleifera seeds and the use for Microcystis aeruginosa removal. Chem. Eng. J. 2016;304:469-475. https://doi.org/10.1016/j.cej.2016.06.101 - Wu Z, Shen H, Ondruschka B, Zhang Y, Wang W, Bremner DH. Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation. J. Hazard. Mater. 2012;235-236:152-158. https://doi.org/10.1016/j.jhazmat.2012.07.034
- Nakai S, Inoue Y, Hosomi M, Murakami A. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res. 2000;34:3026-3032. https://doi.org/10.1016/S0043-1354(00)00039-7
- Chen J, Ma J, Cao W, Wang P, Tong S, Sun Y. Sensitivity of green and blue-green algae to methyl tert-butyl ether. J. Environ. Sci. 2009;21:514-519. https://doi.org/10.1016/S1001-0742(08)62301-3
- Chen J, Yan LG, Yu HQ, et al. Efficient removal of phosphate by facile prepared magnetic diatomite and illite clay from aqueous solution. Chem. Eng. J. 2016;87:162-172.
- Lurling M, Waajen G, Oosterhout F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication. Water Res. 2014;54:78-88. https://doi.org/10.1016/j.watres.2014.01.059
- Wu T, Yan X, Cai X, et al. Removal of Chattonella marina with clay minerals modified with a gemini surfactant. Appl. Clay Sci. 2010;50:604-607. https://doi.org/10.1016/j.clay.2010.10.005
Cited by
- Use of hybrid microcapsules, chitosan-methyl esterified sericite-tannin, for the removal of harmful lake algae and nutrient vol.41, pp.7, 2018, https://doi.org/10.1080/09593330.2018.1511753