References
- Biro, I. and Cveticanin, L. (2016), "Procedures for determination of elastic curve of simply and multiple supported beams", Struct. Eng. Mech., 60(1), 21-30. https://doi.org/10.12989/SEM.2016.60.1.021
- Fertis, D.G. (2006), Nonlinear Structural Engineering with Unique Theories and Methods to Solve Effectively Complex Nonlinear Problems, Springer.
- Kumar, R., Ramachandra, L.S. and Roy, D. (2004) "Techniques based on generic algorithms for large deflection analysis of beams", Sadhana, 29(6), 589-604. https://doi.org/10.1007/BF02901474
- Kumar, R., Ramachandra, L.S. and Roy, D. (2006), "A multi-step linearization techniques for a class of bending value problems in non-linear mechanics", Comput. Mech., 39, 73-81. https://doi.org/10.1007/s00466-005-0009-6
- Merli, R., Lazaro, S., Monleon, S. and Domingo, A. (2010), "Comparison of two linearization schemes for the nonlinear bending problem of a beam pinned at both ends", Int. J. Sol. Struct., 47(6), 865-874. https://doi.org/10.1016/j.ijsolstr.2009.12.001
- Ramachandra, L.S. and Roy, D. (2001), "A new method for nonlinear two-point boundary value problems in solid mechanics", J. Appl. Mech., 68(5), 776-785. https://doi.org/10.1115/1.1387444
- Ramachandra, L.S. and Roy, D. (2002), "The locally transversal linearization (LTL) method revisited: A simple error analysis" J. Sound Vibr., 256(3), 579-589. https://doi.org/10.1006/jsvi.2001.4222
- Rojas, A.L. (2014), "A mathematical model of elastic curve for simply supported beams subjected to uniformly distributed load taking into account the shear deformations", Int. J. Innovat. Comput. Informat. Contr., 5(3), 885-890.
- Rojas, A.L. and Espino, J.V.R. (2015), "Fixed-end moments for beams subjected to a concentrated forced localized anywhere taking into account the shear deformations", Int. J. Innovat. Comput. Informat. Contr., 11(2), 463-474.
- Rojas, A.L., Chavarria, S.L., Elizonda, M.M. and Kalashnikov, V.V. (2016), "A mathematical model of elastic curve for simply supported beams subjected to a concentrated load taking into account the shear deformations", Int. J. Innovat. Comput. Informat. Contr., 12(1), 41-54.
- Roy, D. and Kumar, R. (2005), "A multi-step transversal linearization (MLT) method in non-linear structural dynamics", J. Sound Vibr., 287(1-2), 203-226. https://doi.org/10.1016/j.jsv.2004.11.032
- Thankane, K.S. and Stys, T. (2009), "Finite difference method for beam equation with free ends using mathematica", South. Afr. J. Pure Appl. Math., 4, 61-78.
- Timoshenko, S. and Goodier, J.N. (1952), Theory of Elasticity, McGraw-Hill.
- Viswanath, A. and Roy, D. (2007) "Multi-step transversal and tangential linearization methods applied to a class of nonlinear beam equations", Int. J. Sol. Struct., 44(14-15), 4872-4891. https://doi.org/10.1016/j.ijsolstr.2006.12.008