References
- Abdelali, H.M., Harras, B. and Benamar, R. (2015), "Geometrically non-linear free vibration of fully clamped symmetrically laminated composite skew plates, multi physics modeling and simulation for systems design and monitoring", Appl. Condit. Monitor., 2, 443-452.
- Corr, R.B. and Jennings, A. (1976), "A simultaneous iteration algorithm for symmetric eigen value problems", Int. J. Numer. Eng., 10(3), 647-663. https://doi.org/10.1002/nme.1620100313
- Dalir, M.A. and Shooshtari, A. (2015), "Exact mathematical solution for free vibration of thick laminated plates", Struct. Eng. Mech., 56(5), 835-854. https://doi.org/10.12989/sem.2015.56.5.835
- Dimitri , R., Fantuzzi, N., Li, Y. and Tornabene, F. (2017), "Numerical computation of the crack development and SIF in composite materials with XFEM and SFEM", Compos. Struct., 160(3), 468-490. https://doi.org/10.1016/j.compstruct.2016.10.067
- Fantuzzi, N. and Tornabene, F. (2016), "Strong formulation isogeometric analysis (SFIGA) for laminated composite arbitrarily shaped plates", Compos. Part B: Eng., 96, 173-203. https://doi.org/10.1016/j.compositesb.2016.04.034
- Han, W. and Dickinson, S.M. (1997), "Free vibration of symmetrically laminated skew plates", J. Sound Vibr., 208(3), 367-390. https://doi.org/10.1006/jsvi.1997.1198
- Kapania, R.K. and Singhvi, S. (1992), "Free vibration analyses of generally laminated tapered skew plates", Compos. Eng., 2(3), 197-212. https://doi.org/10.1016/0961-9526(92)90004-P
- Krishna Murthy, V.B., Srividya, K., Satyanarayana M.R.S. and Rao, G.S. (2013), "Effect of geometric parameters on free vibration analysis of thick fiber reinforced plastic (FRP) skew cross-ply laminate with circular cutout", Int. J. Phys. Sci., 8(7), 264-271.
- Kumar, A., Bhargava, P. and Chakrabarti, A. (2014), "Vibration of laminated composite skew hypar shells using higher order theory", Thin-Wall. Struct., 63, 82-90.
- Lee, S.Y. (2010), "Finite element dynamic stability analysis of laminated composite skew plates containing cutouts based on HSDT", Compos. Sci. Technol., 70(8),1249-1257. https://doi.org/10.1016/j.compscitech.2010.03.013
- Liew, K.M., Huang, Y.Q. and Reddy, J.N. (2003), "Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method", Comput. Meth. Appl. Mech. Eng., 192(19), 2203-2222. https://doi.org/10.1016/S0045-7825(03)00238-X
- Mandal, A., Ray, C. and Haldar, S. (2017), "Free vibration analysis of laminated composite skew plates with cut-out", Arch. Appl. Mech., 87(9), 1511-1523. https://doi.org/10.1007/s00419-017-1267-4
- Park, T., Lee, S.Y. and Voyiadjis, G.Z. (2009), "Finite element vibration analysis of composite skew laminates containing delaminations around quadrilateral cutouts", Compos. Part B: Eng., 40(3), 225-236. https://doi.org/10.1016/j.compositesb.2008.11.004
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates: Theory and Application, CRC Press, Boca Raton, Florida, U.S.A.
- Reddy, J.N. and Chao, W.C. (1981), "A comparison of closed-form and finite element solutions of thick laminated anisotropic rectangular plate", Nucl. Eng. Des., 64(2), 153-167. https://doi.org/10.1016/0029-5493(81)90001-7
- Shi, J.W., Nakatani, A. and Kitagawa, H. (2004), "Vibration analysis of fully clamped arbitrarily laminated plate", Compos. Struct., 63(1), 115-122. https://doi.org/10.1016/S0263-8223(03)00138-7
- Sivakumar, K., Iyengar, N.G.R. and Deb, K. (1998), "Optimum design of laminated composite plates with cutouts using a genetic algorithm", Compos. Struct., 42(3), 265-279. https://doi.org/10.1016/S0263-8223(98)00072-5
- Tornabene, F., Fantuzzi, N. and Bacciocchi, B. (2017), "Mechanical behaviour of composite cosserat solids in elastic problems with holes and discontinuities", Compos. Struct., 179(1), 468-481. https://doi.org/10.1016/j.compstruct.2017.07.087
- Wang, X., Wang, Y. and Yuan, Z. (2014), "Accurate vibration analysis of skew plates by the new version of the differential quadrature method", Appl. Math. Model., 38(3), 926-937. https://doi.org/10.1016/j.apm.2013.07.021