Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Akgun, Y., Gantes, C.J., Kalochairetis, K.E. and Kiper, G. (2010), "A novel concept of convertible roofs with high transformability consisting of planar scissor-hinge structures", Eng. Struct., 32, 2873-2883. https://doi.org/10.1016/j.engstruct.2010.05.006
- Akgun, Y., Gantes, C., Sobek, W., Korkmaz, K. and Kalochairetis, K. (2011), "A Novel Adaptive Spatial Scissor-hinge Structural Mechanism for Convertible Roofs", Eng. Struct., 33(4), 1365-1376. https://doi.org/10.1016/j.engstruct.2011.01.014
- Bai, J.B., Shenoi, R.A. and Xiong, J.J. (2017), "Thermal analysis of thin-walled deployable composite boom in simulated space environment", Compos. Struct., 173, 210-218. https://doi.org/10.1016/j.compstruct.2017.04.022
- Block, P. (2003), Scissor hinge deployable membrane structures tensioned by pleated pneumatic artificial muscles, Master Thesis; Vrije Universiteit Brussel, Belgium.
- Cai, J.G., Zhou, Y., Feng, J. and Xu, Y.X. (2012), "Mechanical behavior of a shelter system based on cable-strut structures", J. Zhejiang Univ.-Science A, 13(12), 895-903. https://doi.org/10.1631/jzus.A1200172
- Cai, J.G., Deng, X.W., Feng, J. and Xu, Y.X. (2014), "Mobility Analysis of Generalized Angulated Scissor-like Elements with the Reciprocal Screw Theory", Mech. Mach. Theory, 82, 256-265. https://doi.org/10.1016/j.mechmachtheory.2014.07.011
- Cai, J.G., Deng, X.W., Xu, Y.X. and Feng, J. (2015a), "Geometry and Motion Analysis of Origami-based Deployable Shelter Structures", J. Struct. Eng. ASCE, 141(10), 06015001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001238
- Cai, J.G., Deng, X.W. and Feng, J. (2015b), "Mobility Analysis of Planar Radially Foldable Bar Structures", Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 229(4), 694-702. https://doi.org/10.1177/0954410014539292
- Cai, J.G., Ma, R.J., Deng, X.W. and Feng, J. (2016), "Static behavior of deployable cable-strut structures", J. Constr. Steel Res., 119, 63-75. https://doi.org/10.1016/j.jcsr.2015.12.003
- Cai, J.G., Wang, X.Y., Yang, R.G. and Feng, J. (2018), "Mechanical behavior of tensegrity structures with High-mode imperfections", Mech. Res. Commun., 94, 58-63. https://doi.org/10.1016/j.mechrescom.2018.09.006
- Cai, J.G., Yang, R.G., Wang, X.Y. and Feng, J. (2019), "Effect of initial imperfections of struts on the mechanical behavior of tensegrity structures", Compos. Struct., 207, 871-876. https://doi.org/10.1016/j.compstruct.2018.09.018
- Chen, Y., Peng, R. and You, Z. (2015), "Origami of thick panels", Science, 349(6246), 396-400. https://doi.org/10.1126/science.aab2870
- Chen, L., Hu, D., Deng, H., Cui, Y. and Zhou, Y. (2016), "Optimization of the construction scheme of the cablestrut tensile structure based on error sensitivity analysis", Steel Compos. Struct., Int. J., 21(5), 1031-1043. https://doi.org/10.12989/scs.2016.21.5.1031
- Cheng, B., Wu, J. and Wang, J. (2015), "Strengthening of perforated walls in cable-stayed bridge pylons with double cable planes", Steel Compos. Struct., Int. J., 18(4), 811-831. https://doi.org/10.12989/scs.2015.18.4.811
- Choi, E.M., Lee, J.N. and Park, C.S. (2008), "Characteristics and a Variation of Profile Shape in Scissors Deployable Structure", J. Korean Assoc. Shell Spatial Struct., 8(4), 57-64.
- De Temmerman, N. (2007), Design and Analysis of Deployable Bar Structures for Mobile Architectural Applications, Ph.D. Thesis; Vrije Universiteit Brussel, Belgium.
- Escrig, F., Valcarcel, J.P. and Sanchez, J. (1996), "Deployable cover on a swimming pool in Seville", J. IASS, 37(120), 39-70.
- Filipov, E.T., Tachi, T. and Paulino, G.H. (2015), "Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials", Proceedings of the National Academy of Sciences of the United States of America, 112(40), 12321-12326. https://doi.org/10.1073/pnas.1509465112
- Friedman, N., Farkas, G. and Ibrahimbegovic, A. (2011), "Deployable/Retractable Structures Towards Sustainable Development", Pollack Periodica, 6(2), 85-97. https://doi.org/10.1556/Pollack.6.2011.2.8
- Fu, F. (2006), "Non-linear static analysis and design of Tensegrity domes", Steel Compos. Struct., Int. J., 6(5), 417-433. https://doi.org/10.12989/scs.2006.6.5.417
- Gantes, C. (1996), Deployable Structures: Application and Design, WIT Press, USA.
- Kovacs, F., Tarnai, T., Guest, S.D. and Fowler, P.W. (2004), "Double-link expandohedra: a mechanical model for expansion of a virus", Proc. Roy. Soc. A, 460, 3191-3202. https://doi.org/10.1098/rspa.2004.1344
- Kokawa, T. (1996), "Scissors Arch with Zigzag-Cable through Pulley-Joint", Proceedings of Conceptual Design of Structure, Stuttgart, Volume II, 868-875.
- Kokawa, T. (1997), "Cable Scissors Arch-Marionettic Structure", Structural Morphology, Towards the New Millennium, Proceedings of International Conference of IASS, University of Nottingham, England, pp. 107-116.
- Li, P. and Wu, M. (2017), "Stabilities of cable-stiffened cylindrical single-layer latticed shells", Steel Compos. Struct., Int. J., 24(5), 591-602.
- Li, Y., Vu, K.K. and Liew, J.Y.R. (2011), "Deployable Cable-Chain Structures: Morphology, Structural Response and Robustness Study", J. Int. Assoc. Shell Spatial Struct., 52(168), 83-96.
- Liew, J.Y.R., Vu, K.K. and Anandasivam, K. (2008), "Recent development of deployable tension-strut structures", Adv. Struct. Eng., 11(6), 599-614. https://doi.org/10.1260/136943308787543630
- Liu, Z.Q., Qiu, H. and Li, X. (2017), "Review of large spacecraft deployable membrane antenna structures", Chinese J. Mech. Eng., 30, 1447-1459. https://doi.org/10.1007/s10033-017-0198-x
- Pellegrino, S. (2001), Deployable Structures, Springer-Verlag Wien, New York.
- Raheem, S.E.A. (2014), "Dynamic characteristics of hybrid tower of cable-stayed bridges", Steel Compos. Struct., Int. J., 17(6), 803-824. https://doi.org/10.12989/scs.2014.17.6.803
- Sareh, P. and Guest, S.D. (2015), "Design of isomorphic symmetric descendants of the Miura-ori", Smart Mater. Struct., 24, 085001. https://doi.org/10.1088/0964-1726/24/8/085001
- Samili, A. and Motro, R. (2005), "Folding/unfolding of tensegrity systems by removal of self-stress", Proceeding of IASS 2005.
- Vu, K.K., Liew, J.Y.R. and Anandasivam, K. (2006a), "Deployable tension-strut structures: from concept to implementation", J. Constr. Steel Res., 62, 195-209. https://doi.org/10.1016/j.jcsr.2005.07.007
- Vu, K.K., Liew, J.Y.R. and Anandasivam, K. (2006b), "Deployable tension-strut structures: structural morphology study and alternative form creations", Int. J. Space Struct., 21(3), 149-164. https://doi.org/10.1260/026635106779380494
- Wang, B.B. (1998), "Cable-strut systems: part II-Cable-strut", J. Constr. Steel Res., 45(3), 291-299. https://doi.org/10.1016/S0143-974X(97)00076-X
- Wang, B.B. and Li, Y.Y. (2003), "Novel cable-strut grids made of prisms: part I. Basic theory and design", J. Int. Assoc. Shell Spat. Struct., 44, 93-108.
- Yan, R., Chen, Z., Wang, X., Liu, H. and Xiao, X. (2015), "A new equivalent friction element for analysis of cable supported structures", Steel Compos. Struct., Int. J., 18(4), 947-970. https://doi.org/10.12989/scs.2015.18.4.947
- Zhou, W., Chen, Y., Peng, B., Yang, H., Yu, H.J., Liu, H. and He, X.P. (2014), "Air damping analysis in comb microaccelerometer", Adv. Mech. Eng., Article ID 373172, 6 pages.