References
- Allahkarami, F., Nikkhah-bahrami, M. and Ghassabzadeh Saryazdi, M. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., Int. J., 25(2), 141-155.
- Allahkarami, F., Nikkhah-bahrami, M. and Ghassabzadeh Saryazdi, M. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion", Steel Compos. Struct., Int. J., 26(6), 673-691.
- Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K. and Ni, Z. (2009), "Atomistic simulations of mechanical properties of graphene nanoribbons", Phys. Lett. A, 373(37), 3359-3362. https://doi.org/10.1016/j.physleta.2009.07.048
- Dai, H. (2002), "Carbon Nanotubes: Synthesis, Integration, and Properties", Acc. Chem. Res., 35(12), 1035-1044. https://doi.org/10.1021/ar0101640
- Georgantzinos, S.K., Giannopoulos, G.I. and Anifantis, N.K. (2010), "Numerical investigation of elastic mechanical properties of graphene structures", Mater. Des., 31(10), 4646-4654. https://doi.org/10.1016/j.matdes.2010.05.036
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Jalali, S.K., Jomehzadeh, E. and Pugno, N.M. (2016), "Influence of out-of-plane defects on vibration analysis of graphene: Molecular Dynamics and Non-local Elasticity approaches", Superlattices Microstruct., 91, 331-344. https://doi.org/10.1016/j.spmi.2016.01.023
- Jiang, J.W., Wang, J.S. and Li, B. (2009), "Young's modulus of graphene: A molecular dynamics study", Phys. Rev. B, 80(11), 113405-113408. https://doi.org/10.1103/PhysRevB.80.113405
- Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNTand graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
- Kvashnin, A.G., Sorokin, P.B., Kvashnin, D.G. (2010), "The Theoretical Study of Mechanical Properties of Graphene Membranes", Fuller. Nanotubes Carbon Nanostruct., 18(4-6), 497-500. https://doi.org/10.1080/1536383X.2010.488160
- Lee, C., Wei, X.D., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321(5887), 385-388. https://doi.org/10.1126/science.1157996
- Lekhnitskii, S.G. (1963), "Theory of elasticity of an anisotropic elastic body", Phys. Today, 17, 84 p.
- Liu, F., Ming, P. and Li, J. (2007), "Ab initio calculation of ideal strength and phonon instability of graphene under tension", Phys. Rev. B, 76(6), 064120-064127. https://doi.org/10.1103/PhysRevB.76.064120
- Ma, J., Alfe, D., Michaelides, A. and Wang, E. (2009), "Stone-Wales defects in graphene and other planar sp 2 -bonded materials", Phys. Rev. B, 80, 1-4.
- Marin, M. (1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mechanica, 122(1-4), 155-168. https://doi.org/10.1007/BF01181996
- Marin, M. (2008), "Weak Solutions in Elasticity of Dipolar Porous Materials", Math. Probl. Eng., 1-8. DOI: http://dx.doi.org/10.1155/2008/158908
- Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419
- Marin, M. (2016), "An approach of a heat-flux dependent theory for micropolar porous media", Meccanica, 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2
- Marin, M. and Ochsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continu. Mech. Thermodyn., 29(6), 1365-1374. https://doi.org/10.1007/s00161-017-0585-7
- Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277
- Moradi-Dastjerdi, R. and Payganeh, G. (2017a), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., Int. J., 25(3), 315-326.
- Moradi-Dastjerdi, R. and Payganeh, G. (2017b), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., Int. J., 24(3), 359-367.
- Navarro, C.G., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M. and Kern, K. (2007), "Electronic transport properties of individual chemically reduced graphene oxide sheets", Nano Lett., 7(11), 3499-3503. https://doi.org/10.1021/nl072090c
- Neek-Amal, M. and Peeters, F.M. (2010), "Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene", Phys. Rev. B, 81(23), 235437. https://doi.org/10.1103/PhysRevB.81.235437
- Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B, 405(5), 1301-1306. https://doi.org/10.1016/j.physb.2009.11.071
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells-Theory and Analysis, (Second Edition), CRC Press.
- Reddy, C.D., Rajendran, S. and Liew, K.M. (2006), "Equilibrium configuration and continuum elastic properties of finite sized graphene", Nanotechnology, 17(3), 864-870. https://doi.org/10.1088/0957-4484/17/3/042
- Sakhaee-Pour, A. (2009), "Elastic properties of single-layered graphene sheet", Solid State Commun., 149(1), 91-95. https://doi.org/10.1016/j.ssc.2008.09.050
- Shen, L., Shen, H.S. and Zhang, C.L. (2010), "Temperature-dependent elastic properties of single layer graphene sheets", Mater. Des., 31, 4445-4449. https://doi.org/10.1016/j.matdes.2010.04.016
- Soleimani, A., Naei, M.H. and Mosavi Mashhadi, M. (2017), "Nonlocal postbuckling analysis of graphene sheets with initial imperfection based on first order shear deformation theory", Results in Phys., 7, 1299-1307. https://doi.org/10.1016/j.rinp.2017.03.003
- Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), 282-286. https://doi.org/10.1038/nature04969
- Sun, X., Fu, Z. and Xia, M. (2014), "Effects of vacancy defect on the tensile behavior of graphene", Theor. Appl. Mech. Lett., 4(5), 51002. https://doi.org/10.1063/2.1405102
- Sun, X.Y., Hu, H., Caob, C. and Xua, Y.J. (2015), "Anisotropic vacancy-defect-induced fracture strength loss of graphene", RSC Adv., 5(2), 13623-13627. https://doi.org/10.1039/C4RA14044C
- Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., Int. J., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623
- Tahouneh, V. (2017), "Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate", Steel Compos. Struct., Int. J., 25(6), 649-661.
- Tahouneh, V., Mosavi Mashhadi, M. and Naei, M.H. (2016), "Finite element and micromechanical modeling for investigating effective material properties of polymer-matrix nanocomposites with microfiber, reinforced by CNT arrays", Int. J. Adv. Struct. Eng., 8(3), 297-306. https://doi.org/10.1007/s40091-016-0132-y
- Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 67(2), 1-55.
- Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale approach for three-phase CNT/polymer/ fiber laminated nanocomposite structures", Polym. Compos. [In Press] DOI: 10.1002/pc.24520
- Tsai, J.L. and Tu, J.F. (2010), "Characterizing mechanical properties of graphite using molecular dynamics simulation", Mater. Des., 31(1), 194-199. https://doi.org/10.1016/j.matdes.2009.06.032
- Udupa, A. and Martini, A. (2011), "Model predictions of shear strain-induced ridge defects in graphene", Carbon, 49(11), 3571-3578. https://doi.org/10.1016/j.carbon.2011.04.057
- Wu, Y., Yin, J., Xie, W., Zhang, W., Wu, B., Jiang, Y. and Zhang, P. (2015), "Effect of vacancy distribution on the relaxation properties of graphene : A molecular dynamics study", IET Micro. Nano Lett., 10(12), 693-695. https://doi.org/10.1049/mnl.2015.0266
- Xie, G., Shen, Y., Wei, X., Yang, L., Xiao, H., Zhong, J. and Zhang, G. (2014), "A bond-order theory on the phonon scattering by vacancies in two-dimensional materials", Electron. Spintron. devices, 1-23.
- Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response", Phys. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
- Yanovsky, Y.G., Nikitina, E.A., Karnet, Y.N. and Nikitin, S.M. (2009), "Quantum Mechanics Study of the Mechnism of Deformation and Fracture of Graphene", Phys. Mesomech., 12, 254-262. https://doi.org/10.1016/j.physme.2009.12.007
- Zhang, Y., Chen, Y., Zhou, K. and Liu, C. (2009), "Improving gas sensing properties of graphene by introducing dopants and defects : a first-principles study", Nanotechnology, 20(18), 185504. https://doi.org/10.1088/0957-4484/20/18/185504
Cited by
- Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261