DOI QR코드

DOI QR Code

Curved-quartic-function elements with end-springs in series for direct analysis of steel frames

  • Liu, Si-Wei (School of Civil Engineering, Sun-Yat-Sen University) ;
  • Chan, Jake Lok Yan (Department of Civil Engineering, The University of Hong Kong) ;
  • Bai, Rui (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Chan, Siu-Lai (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University)
  • 투고 : 2018.05.30
  • 심사 : 2018.11.19
  • 발행 : 2018.12.10

초록

A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-${\delta}$ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.

키워드

과제정보

연구 과제번호 : Second-order and Advanced Analysis of Arches and Curved Structures, Second-Order Analysis of Flexible Steel Cable Nets Supporting Debris, Development of an energy absorbing device for flexible rock-fall barriers, Advanced Numerical Analyses for Building Structures Using High Performance Steel Materials

연구 과제 주관 기관 : Hong Kong Branch of Chinese National Engineering Research Centre

참고문헌

  1. Abdalla, K.M. and Chen, W.F. (1995), "Expanded database of semi-rigid steel connections", Comput. Struct., 56(4), 553-564. https://doi.org/10.1016/0045-7949(94)00558-K
  2. Alhasawi, A., Heng, P., Hjiaj, M., Guezouli, S. and Battini, J.M. (2017), "Co-rotational planar beam element with generalized elasto-plastic hinges", Eng. Struct., 151, 188-205. https://doi.org/10.1016/j.engstruct.2017.07.085
  3. ANSI/AISC360-16 (2016), Specification for Structural Steel Buildings; American Institute of Steel Construction, Chicago, IL, USA.
  4. Artar, M. and Daloglu, A.T. (2015), "Optimum design of Steel Frames with semi-rigid connections and composite beams", Struct. Eng. Mech., Int. J., 55(2), 299-313. https://doi.org/10.12989/sem.2015.55.2.299
  5. Bayat, M. and Zahrai, S.M. (2016), "Seismic performance of midrise steel frames with semi-rigid connections having different moment capacity", Steel Compos. Struct., Int. J., 25(1), 1-17.
  6. Cai, J., Liu, Y., Feng, J. and Tu, Y. (2017), "Nonlinear stability analysis of a radially retractable suspen-dome", Adv. Steel Constr., 13(2), 117-131.
  7. Chan, S.L. (1992), "Large deflection kinematic formulations for three-dimensional framed structures", Comput. Methods Appl. Mech. Eng., 95(1), 17-36. https://doi.org/10.1016/0045-7825(92)90079-Y
  8. Chan, S.L. and Zhou, Z.H. (1994), "Pointwise equilibrating polynomial element for nonlinear analysis of frames", J. Struct. Eng., 120, 1703. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1703)
  9. Chan, S.L. and Zhou, Z.H. (1995), "Second-order elastic analysis of frames using single imperfect element per member", J. Struct. Eng., 121(6), 939-945. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(939)
  10. Chen, W.F. and Kishi, N. (1989), "Semirigid steel beam-to-column connections: Data base and modeling", J. Struct. Eng., 115(1), 105-119. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(105)
  11. Chiorean, C. (2009), "A computer method for nonlinear inelastic analysis of 3D semi-rigid steel frameworks", Eng. Struct., 31(12), 3016-3033. https://doi.org/10.1016/j.engstruct.2009.08.003
  12. Chiorean, C. (2017), "Second-order flexibility-based model for nonlinear inelastic analysis of 3D semi-rigid steel frameworks", Eng. Struct., 136, 547-579. https://doi.org/10.1016/j.engstruct.2017.01.040
  13. CoPSC (2011), Code of practice for the structural use of steel 2011; Buildings Department, Hong Kong SAR Government.
  14. Eurocode 3 (2005), Eurocode 3: Design of Steel Structures: Part 1-1: General Rules and Rules for Buildings.
  15. Farahi, M. and Erfani, S. (2017), "Employing a fiber-based finitelength plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns", Steel Compos. Struct., Int. J., 23(5), 501-516. https://doi.org/10.12989/scs.2017.23.5.501
  16. Gao, L., Jiang, K., Bai, L. and Wang, Q. (2017), "Experimental study on stability of high strength steel long columns with boxsections", Adv. Steel Constr., 13(4), 399-411.
  17. Gu, J.X. and Chan, S.L. (2005), "Second-order analysis and design of steel structures allowing for member and frame imperfections", Int. J. Numer. Methods Eng., 62(5), 601-615. https://doi.org/10.1002/nme.1182
  18. Hoang, V.L., Dang, H.N., Jaspart, J.P. and Demonceau, J.F. (2015), "An overview of the plastic-hinge analysis of 3D steel frames", Asia Pacific J. Comput. Eng., 2(1), 4. https://doi.org/10.1186/s40540-015-0016-9
  19. Iu, C.K. (2016a), "Generalised element load method with whole domain accuracy for reliable structural design", Adv. Steel Constr., 12(4), 466-486.
  20. Iu, C.K. (2016b), "Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge", Comput. Concrete, Int. J., 17(5), 579-596. https://doi.org/10.12989/cac.2016.17.5.579
  21. Iu, C.K. and Bradford, M. (2012a), "Higher-order non-linear analysis of steel structures, Part I: Elastic second-order formulation", Adv. Steel Constr., 8(2), 168-182.
  22. Iu, C.K. and Bradford, M. (2012b), "Higher-order non-linear analysis of steel structures, Part II: Refined plastic hinge formulation", Adv. Steel Constr., 8(2), 183-198.
  23. Kim, S.E. and Choi, S.H. (2001), "Practical advanced analysis for semi-rigid space frames", Int. J. Solids Struct., 38(50), 9111-9131. https://doi.org/10.1016/S0020-7683(01)00141-X
  24. King, W.S., White, D.W. and Chen, W.F. (1992), "Second-order inelastic analysis methods for steel-frame design", J. Struct. Eng., 118(2), 408-428. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:2(408)
  25. Kishi, N., Chen, W., Goto, Y. and Hasan, R. (1996), "Behavior of tall buildings with mixed use of rigid and semi-rigid connections", Comput. Struct., 61(6), 1193-1206. https://doi.org/10.1016/0045-7949(96)00052-1
  26. Lezgy-Nazargah, M. and Kafi, L. (2015), "Analysis of composite steel-concrete beams using a refined high-order beam theory", Steel Compos. Struct., Int. J., 18(6), 1353-1368. https://doi.org/10.12989/scs.2015.18.6.1353
  27. Liew, J.Y.R., White, D.W. and Chen, W.F. (1993a), "Second-order refined plastic-hinge analysis for frame design. Part I", J. Struct. Eng., 119(11), 3196-3216. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:11(3196)
  28. Liew, J.Y.R., White, D.W. and Chen, W.F. (1993b), "Second-order refined plastic-hinge analysis for frame design. Part II", J. Struct. Eng., 119(11), 3217-3236. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:11(3217)
  29. Liew, J.Y.R., Chen, H., Shanmugam, N.E. and Chen, W.F. (2000), "Improved nonlinear plastic hinge analysis of space frame structures", Eng. Struct., 22(10), 1324-1338. https://doi.org/10.1016/S0141-0296(99)00085-1
  30. Lui, E.M. and Chen, W.F. (1987), "Steel frame analysis with flexible joints", J. Constr. Steel Res., 8, 161-202. https://doi.org/10.1016/0143-974X(87)90058-7
  31. Liu, S.W., Liu, Y.P. and Chan, S.L. (2014a), "Direct analysis by an arbitrarily-located-plastic-hinge element - Part 1: Planar analysis", J. Constr. Steel Res., 103, 303-315. https://doi.org/10.1016/j.jcsr.2014.07.009
  32. Liu, S.W., Liu, Y.P. and Chan, S.L. (2014b), "Direct analysis by an arbitrarily-located-plastic-hinge element - Part 2: Spatial analysis", J. Constr. Steel Res., 103, 316-326. https://doi.org/10.1016/j.jcsr.2014.07.010
  33. Nguyen, P.C. and Kim, S.E. (2013), "Nonlinear elastic dynamic analysis of space steel frames with semi-rigid connections", J. Constr. Steel Res., 84, 72-81. https://doi.org/10.1016/j.jcsr.2013.02.004
  34. Nguyen, P.C. and Kim, S.E. (2016), "Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method", Steel Compos. Struct., Int. J., 21(5), 1121-1144. https://doi.org/10.12989/scs.2016.21.5.1121
  35. Saritas, A. and Koseoglu, A. (2015), "Distributed inelasticity planar frame element with localized semi-rigid connections for nonlinear analysis of steel structures", Int. J. Mech. Sci., 96-97, 216-231. https://doi.org/10.1016/j.ijmecsci.2015.04.005
  36. Thai, H.T. and Kim, S.E. (2015), "Second-order distributed plasticity analysis of steel frames with semi-rigid connections", Thin-Wall. Struct., 94, 120-128. https://doi.org/10.1016/j.tws.2015.04.011
  37. Thai, H.T., Kim, S.E. and Kim, J. (2017), "Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling", Steel Compos. Struct., Int. J., 24(3), 339-349.
  38. Torbaghan, M.K., Sohrabi, M.R. and Kazemi, H.H. (2018), "Investigating the behavior of specially pre-fabricated steel moment connection under cyclic loading", Adv. Steel Constr., 14(3), 412-423.
  39. Vogel, U. (1985), "Calibrating frames", Stahlbau, 10, 295-301.
  40. White, D.W. (1993), "Plastic-hinge methods for advanced analysis of steel frames", J. Constr. Steel Res., 24(2), 121-152. https://doi.org/10.1016/0143-974X(93)90059-2
  41. White, D.W., Jeong, W.Y. and Togay, O. (2016), "Comprehensive stability design of planar steel members and framing systems via inelastic buckling analysis", Int. J. Steel Struct., 16(4), 1029-1042. https://doi.org/10.1007/s13296-016-0070-3
  42. Yang, L., Zhao, M.h., Chan, T.M. and Shang, F. (2018), "Flexural buckling design of fabricated austenitic and duplex stainless steel columns", Adv. Steel Constr., 14(2), 184-205.
  43. Yau, C.Y. and Chan, S.L. (1994), "Inelastic and Stability Analysis of Flexibly Connected Steel Frames by Springs-in-Series Model", J. Struct. Eng.-Asce, 120(10), 2803-2819. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2803)
  44. Zhang, H., Ellingwood, B.R. and Rasmussen, K.J. (2014), "System reliabilities in steel structural frame design by inelastic analysis", Eng. Struct., 81, 341-348. https://doi.org/10.1016/j.engstruct.2014.10.003
  45. Zhang, X., Rasmussen, K.J. and Zhang, H. (2016), "Second-order effects in locally and/or distortionally buckled frames and design based on beam element analysis", J. Constr. Steel Res., 122, 57-69. https://doi.org/10.1016/j.jcsr.2016.01.022
  46. Zhou, Z.H. and Chan, S.L. (1995), "Self-equilibrating element for second-order analysis of semirigid jointed frames", J. Eng. Mech.-Asce, 121(8), 896-902. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:8(896)
  47. Ziemian, R.D. and Abreu, J.C.B. (2018), "Design by advanced analysis-3D benchmark problems: Members subjected to major-and minor-axis flexure", Steel Constr., 11(1), 24-29. https://doi.org/10.1002/stco.201810011
  48. Zohra, D.F. and Abd Nacer, I.T. (2018), "Dynamic analysis of Steel Frames with semi-rigid connections", Struct. Eng. Mech., Int. J. 65(3), 327-334.