DOI QR코드

DOI QR Code

Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation

  • Benlahcen, Fouad (Department of Science and Technology, University Centre of Tamanrasset) ;
  • Belakhdar, Khalil (Department of Science and Technology, University Centre of Tamanrasset) ;
  • Sellami, Mohammed (Department of Science and Technology, University Centre of Tamanrasset) ;
  • Tounsi, Abdelouahed (Laboratory of Materials and Hydrology, University of Sidi Bel Abbes)
  • Received : 2018.02.06
  • Accepted : 2018.11.13
  • Published : 2018.12.10

Abstract

This research presents an investigation on the thermal buckling resistance of FGM plates having parabolic-concave thickness variation exposed to uniform and gradient temperature change. An analytical formulation is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. A specific function of thickness variation is introduced where it controls the parabolic variation intensity of the thickness without changing the original material volume. The results indicated that the loss ratio in buckling resistance is the same for any gradient temperature profile. Influencing geometrical and material parameters on the loss ratio in the thermal resistance buckling are investigated which may help in design guidelines of such complex structures.

Keywords

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda, B. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
  2. Bouazza, M., Tounsi, A., Adda, E.A. and Abdelkader, M. (2009), "Buckling analysis of functionally graded plates with simply supported edges", Leonardo J. Sci., 8, (15), 21-32.
  3. Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda, B.E. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., Int. J., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
  4. Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665
  5. Bourada, M., Tounsi, A. and Houari, M.S. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  6. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  7. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  8. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
  9. El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., Int. J., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357
  10. Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple hsdt for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 62(4), 401-415. https://doi.org/10.12989/sem.2017.62.4.401
  11. Fazzolari, F.A. and Carrera, E. (2014), "Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions", J. Therm. Stress., 37(12), 1449-1481. https://doi.org/10.1080/01495739.2014.937251
  12. Fekrar, A., Zidi, M., Boumia, L., Atmane, H.A., Tounsi, A. and Adda, B.E. (2013), "Thermal buckling of AL/AL2O3 functionally graded plates based on first order theory", Nat. Technol., 8, 12-16.
  13. Ghomshei, M.M. and Abbasi, V. (2013), "Thermal buckling analysis of annular FGM plate having variable thickness under thermal load of arbitrary distribution by finite element method", J. Mech. Sci. Technol., 27(4), 1031-1039. https://doi.org/10.1007/s12206-013-0211-y
  14. Han, Q., Wang, Z., Nash, D.H. and Liu, P. (2017), "Thermal buckling analysis of cylindrical shell with functionally graded material coating", Compos. Struct., 181, 171-182. https://doi.org/10.1016/j.compstruct.2017.08.085
  15. Houari, A., Benguediab, M., Bakora, A. and Tounsi, A. (2018), "Mechanical and thermal stability investigation of functionally graded plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 65(4), 423-434.
  16. Jabbarzadeh, M., Eskandari, J.A.M.J. and Khosravi, M. (2013), "The analysis of thermal buckling of circular plates of variable thickness from functionally graded materials", Modares Mech. Eng., 12(5), 59-73.
  17. Jalali, S.K., Naei, M.H. and Poorsolhjouy, A. (2011), "Buckling of circular sandwich plates of variable core thickness and FGM face sheets", Int. J. Struct. Stab. Dyn., 11(2), 273-295. https://doi.org/10.1142/S0219455411004099
  18. Kandasamy, R., Dimitri, R. and Tornabene, F. (2016), "Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments", Compos. Struct., 157, 207-221. https://doi.org/10.1016/j.compstruct.2016.08.037
  19. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., Int. J., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  20. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Methods, 11(5), 1350077. https://doi.org/10.1142/S0219876213500771
  21. Lee, Y.H., Bae, S.I. and Kim, J.H. (2016), "Thermal buckling behavior of functionally graded plates based on neutral surface", Compos. Struct., 137, 208-214. https://doi.org/10.1016/j.compstruct.2015.11.023
  22. Le-Manh, T., Huynh-Van, Q., Phan, T.D., Phan, H.D. and Nguyen-Xuan, H. (2017), "Isogeometric nonlinear bending and buckling analysis of variable-thickness composite plate structures", Compos. Struct., 159, 818-826. https://doi.org/10.1016/j.compstruct.2016.09.067
  23. Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87(4), 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002
  24. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
  25. Mozafari, H. and Ayob, A. (2012), "Effect of thickness variation on the mechanical buckling load in plates made of functionally graded materials", Procedia Technol., 1, 496-504. https://doi.org/10.1016/j.protcy.2012.02.108
  26. Mozafari, H., Abdi, B. and Amran, A. (2012a), "Optimization of temperature-dependent functionally graded material based on colonial competitive algorithm", Appl. Mech. Mater., 121, 4575-4580.
  27. Mozafari, H., Abdi, B., Amran, A. and Alias, A. (2012b), "Optimum critical buckling of functional graded plates under non-linear temperature by using imperialist competitive algorithm", Appl. Mech. Mater., 110, 3429-3433.
  28. Mozafari, H., Ayob, A. and Alias, A. (2010a), "Influence of thickness variation on the buckling load in plates made of functionally graded materials", Eur. J. Sci. Res., 47(3), 422-435.
  29. Mozafari, H., Ayob, A. and Alias, A. (2010b), "Verification of the thermal buckling load in plates plates made of functional graded materials", Int. J. Eng., 4(5), 338-356.
  30. Pouladvand, M. (2009), "Thermal stability of thin rectangular plates with variable thickness made of functionally graded materials", J. Solid Mech., 1(3), 171-189.
  31. Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., Int. J., 46(2), 269-294. https://doi.org/10.12989/sem.2013.46.2.269
  32. Raki, M., Alipour, R. and Kamanbedast, A. (2012), "Thermal buckling of thin rectangular FGM plate", World Appl. Sci. J., 16(1), 52-62.
  33. Szilard, R. (2004), Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods, John Wiley & Sons, Hoboken, NJ, USA. ISBN: 978-0-471-42989-0
  34. Yu, T., Yin, S., Bui, T.Q., Liu, C. and Wattanasakulpong, N. (2017), "Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads", Compos. Struct., 162, 54-69. https://doi.org/10.1016/j.compstruct.2016.11.084
  35. Zenkour, A.M. and Mashat, D.S. (2010), "Thermal buckling analysis of ceramic-metal functionally graded plates", Nat. Sci., 2(9), 968-978. https://doi.org/10.4236/ns.2010.29118
  36. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012
  37. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005

Cited by

  1. Effect of boundary conditions on thermal buckling of laminated composite shallow shell vol.42, pp.p5, 2021, https://doi.org/10.1016/j.matpr.2020.12.501