References
- Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda, B. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
- Bouazza, M., Tounsi, A., Adda, E.A. and Abdelkader, M. (2009), "Buckling analysis of functionally graded plates with simply supported edges", Leonardo J. Sci., 8, (15), 21-32.
- Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda, B.E. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., Int. J., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
- Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665
- Bourada, M., Tounsi, A. and Houari, M.S. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
- Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
- El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., Int. J., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357
- Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple hsdt for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 62(4), 401-415. https://doi.org/10.12989/sem.2017.62.4.401
- Fazzolari, F.A. and Carrera, E. (2014), "Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions", J. Therm. Stress., 37(12), 1449-1481. https://doi.org/10.1080/01495739.2014.937251
- Fekrar, A., Zidi, M., Boumia, L., Atmane, H.A., Tounsi, A. and Adda, B.E. (2013), "Thermal buckling of AL/AL2O3 functionally graded plates based on first order theory", Nat. Technol., 8, 12-16.
- Ghomshei, M.M. and Abbasi, V. (2013), "Thermal buckling analysis of annular FGM plate having variable thickness under thermal load of arbitrary distribution by finite element method", J. Mech. Sci. Technol., 27(4), 1031-1039. https://doi.org/10.1007/s12206-013-0211-y
- Han, Q., Wang, Z., Nash, D.H. and Liu, P. (2017), "Thermal buckling analysis of cylindrical shell with functionally graded material coating", Compos. Struct., 181, 171-182. https://doi.org/10.1016/j.compstruct.2017.08.085
- Houari, A., Benguediab, M., Bakora, A. and Tounsi, A. (2018), "Mechanical and thermal stability investigation of functionally graded plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 65(4), 423-434.
- Jabbarzadeh, M., Eskandari, J.A.M.J. and Khosravi, M. (2013), "The analysis of thermal buckling of circular plates of variable thickness from functionally graded materials", Modares Mech. Eng., 12(5), 59-73.
- Jalali, S.K., Naei, M.H. and Poorsolhjouy, A. (2011), "Buckling of circular sandwich plates of variable core thickness and FGM face sheets", Int. J. Struct. Stab. Dyn., 11(2), 273-295. https://doi.org/10.1142/S0219455411004099
- Kandasamy, R., Dimitri, R. and Tornabene, F. (2016), "Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments", Compos. Struct., 157, 207-221. https://doi.org/10.1016/j.compstruct.2016.08.037
- Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., Int. J., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
- Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Methods, 11(5), 1350077. https://doi.org/10.1142/S0219876213500771
- Lee, Y.H., Bae, S.I. and Kim, J.H. (2016), "Thermal buckling behavior of functionally graded plates based on neutral surface", Compos. Struct., 137, 208-214. https://doi.org/10.1016/j.compstruct.2015.11.023
- Le-Manh, T., Huynh-Van, Q., Phan, T.D., Phan, H.D. and Nguyen-Xuan, H. (2017), "Isogeometric nonlinear bending and buckling analysis of variable-thickness composite plate structures", Compos. Struct., 159, 818-826. https://doi.org/10.1016/j.compstruct.2016.09.067
- Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87(4), 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
- Mozafari, H. and Ayob, A. (2012), "Effect of thickness variation on the mechanical buckling load in plates made of functionally graded materials", Procedia Technol., 1, 496-504. https://doi.org/10.1016/j.protcy.2012.02.108
- Mozafari, H., Abdi, B. and Amran, A. (2012a), "Optimization of temperature-dependent functionally graded material based on colonial competitive algorithm", Appl. Mech. Mater., 121, 4575-4580.
- Mozafari, H., Abdi, B., Amran, A. and Alias, A. (2012b), "Optimum critical buckling of functional graded plates under non-linear temperature by using imperialist competitive algorithm", Appl. Mech. Mater., 110, 3429-3433.
- Mozafari, H., Ayob, A. and Alias, A. (2010a), "Influence of thickness variation on the buckling load in plates made of functionally graded materials", Eur. J. Sci. Res., 47(3), 422-435.
- Mozafari, H., Ayob, A. and Alias, A. (2010b), "Verification of the thermal buckling load in plates plates made of functional graded materials", Int. J. Eng., 4(5), 338-356.
- Pouladvand, M. (2009), "Thermal stability of thin rectangular plates with variable thickness made of functionally graded materials", J. Solid Mech., 1(3), 171-189.
- Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., Int. J., 46(2), 269-294. https://doi.org/10.12989/sem.2013.46.2.269
- Raki, M., Alipour, R. and Kamanbedast, A. (2012), "Thermal buckling of thin rectangular FGM plate", World Appl. Sci. J., 16(1), 52-62.
- Szilard, R. (2004), Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods, John Wiley & Sons, Hoboken, NJ, USA. ISBN: 978-0-471-42989-0
- Yu, T., Yin, S., Bui, T.Q., Liu, C. and Wattanasakulpong, N. (2017), "Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads", Compos. Struct., 162, 54-69. https://doi.org/10.1016/j.compstruct.2016.11.084
- Zenkour, A.M. and Mashat, D.S. (2010), "Thermal buckling analysis of ceramic-metal functionally graded plates", Nat. Sci., 2(9), 968-978. https://doi.org/10.4236/ns.2010.29118
- Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005
Cited by
- Effect of boundary conditions on thermal buckling of laminated composite shallow shell vol.42, pp.p5, 2021, https://doi.org/10.1016/j.matpr.2020.12.501