참고문헌
- Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for Size-dependent bending and vibration analysis of functionally graded", Steel Compos. Struct., Int. J., 26(1), 89-102.
- Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Latin Am. J. Solids Struct., 11(11), 2073-2092. https://doi.org/10.1590/S1679-78252014001100009
- Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., Int. J., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659
- Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., Int. J., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001
- Arefi, M. and Zenkour, A.M. (2017a), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A, 123(3), 202.
- Arefi, M. and Zenkour, A.M. (2017b), "Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater. DOI: 1099636217697497 https://doi.org/10.1177/1099636217697497
- Arefi, M. and Zenkour, A.M. (2017c), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
- Arefi, M. and Zenkour, A.M. (2017d), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Mat., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
- Arefi, M. and Zenkour, A.M. (2017e), "Influence of magnetoelectric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater. DOI: 1099636217723186 https://doi.org/10.1177/1099636217723186
- Arefi, M. and Zenkour, A.M. (2017f), "Electro-magneto-elastic analysis of a three-layer curved beam", Smart Struct. Syst., Int. J., 19(6), 695-703.
- Arefi, M., Zamani, M.H. and Kiani, M. (2018), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039
- Arslan, E. and Usta, R. (2014), "Mechanical and electrical fields of piezoelectric curved sensors", Arch. Mech., 66(5), 329-342.
- Bahadur, R., Upadhyay, A.K. and Shukla, K.K. (2017), "Static analysis of singly and doubly curved panels on rectangular planform", Steel Compos. Struct., Int. J., 24(6), 659-670.
- Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
- Ebrahimi, N. and Beni, Y.T. (2016), "Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory", Steel Compos. Struct., Int. J., 22(6), 1301-1336. https://doi.org/10.12989/scs.2016.22.6.1301
- Hajianmaleki, M. and Qatu, M.S. (2013), "Vibrations of straight and curved composite beams: A review", Compos. Struct., 100, 218-232. https://doi.org/10.1016/j.compstruct.2013.01.001
- Hou, P.F. and Leung, A.Y.T. (2004), "The transient responses of magneto-electro-elastic hollow cylinders", Smart Mater. Struct., 13, 762-776. https://doi.org/10.1088/0964-1726/13/4/014
- Kakar, R. and Kakar, S. (2014), "Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space", Geomech. Eng., Int. J., 7(1), 1-36. https://doi.org/10.12989/gae.2014.7.1.001
- Kakar, R. and Kakar, S. (2015), "Edge wave propagation in an electro-magneto-thermoelastic homogeneous plate subjected to stress", Struct. Eng. Mech., Int. J., 53(6), 1201-1214. https://doi.org/10.12989/sem.2015.53.6.1201
- Koutsawa, Y. and Daya, E.M. (2007), "Static and free vibration analysis of laminated glass beam on viscoelastic supports", Int. J. Solids Struct., 44, 8735-8750. https://doi.org/10.1016/j.ijsolstr.2007.07.009
- Kuang, Y.D., Li, G.Q., Chen, C.Y. and Min, Q. (2007), "The static responses and displacement control of circular curved beams with piezoelectric actuators", Smart Mater. Struct., 16, 1016-1024. https://doi.org/10.1088/0964-1726/16/4/009
- Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of doublebonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., Int. J., 21(1), 1-36. https://doi.org/10.12989/scs.2016.21.1.001
- Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120
- Rahmani, O., Deyhim S. and Hosseini, S.A.H. (2018), "Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory", Steel Compos. Struct., Int. J., 27(3), 371-388.
- Shao, D., Hu, S., Wang, Q. and Pang, F. (2016), "A unified analysis for the transient response of composite laminated curved beam with arbitrary lamination schemes and general boundary restraints", Compos. Struct., 154, 507-526. https://doi.org/10.1016/j.compstruct.2016.07.070
- Shi, Z.F. (2005), "Bending behavior of piezoelectric curved actuator", Smart Mater. Struct., 14, 835-842. https://doi.org/10.1088/0964-1726/14/4/043
- Shi, Z.F. and Zhang, T. (2008), "Bending analysis of a piezoelectric curved actuator with a generally graded property for the piezoelectric parameter", Smart Mater. Struct., 17, 045018, 7 pages.
- Sun, D.C. and Tong, L. (2001), "Sensor/actuator equations for curved piezoelectric fibers and vibration control of composite beams using fiber modal actuators/sensors", J. Sound Vib., 241(2), 297-314. https://doi.org/10.1006/jsvi.2000.3269
- Sun, D.C. and Tong, L. (2002), "Modeling and analysis of curved beams with debonded piezoelectric sensor/actuator patches", Int. J. Mech. Sci., 44, 1755-1777. https://doi.org/10.1016/S0020-7403(02)00055-3
- Susanto, K. (2009), "Vibration analysis of piezoelectric laminated slightly curved beams using distributed transfer function method", Int. J. Solids Struct., 46, 1564-1573. https://doi.org/10.1016/j.ijsolstr.2008.11.024
- Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D, 44, 365301, 8 pages.
- Zhou, Y., Dong, Y. and Li, S. (2010), "Analysis of a curved beam MEMS piezoelectric vibration energy harvester", Adv. Mater. Res., 139-141, 1578-1581. https://doi.org/10.4028/www.scientific.net/AMR.139-141.1578
- Zhou, Y., Nyberg, T.R., Xiong, G., Zhou, H. and Li, S. (2016), "Precise deflection analysis of laminated piezoelectric curved beam", J. Intel. Mater. Syst. Struct., 27(16), 2179-2198. https://doi.org/10.1177/1045389X15624797
피인용 문헌
- Nonlinear Vibration Analysis of Damaged Microplate considering Size Effect vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8897987
- Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.203