References
- Ansari, R. and Gholami, R. (2016), "Nonlinear primary resonance of third-order shear deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes", Compos. Struct., 154, 707-723. https://doi.org/10.1016/j.compstruct.2016.07.023
- Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Phys. E: Low-Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
- Arasteh, R., Omidi, M., Rousta, A.H.A. and Kazerooni, H. (2011), "A study on effect of waviness on mechanical properties of multi-walled carbon nanotube/epoxy composites using modified Halpin-Tsai theory", J. Macromol. Sci. Part B, 50(12), 2464-2480. https://doi.org/10.1080/00222348.2011.579868
- Bayat, M.R., Rahmani, O. and Mosavi Mashhadi, M. (2016), "Nonlinear low-velocity impact analysis of functionally graded nanotube-reinforced composite cylindrical shells in thermal environments", Polym. Compos., 39(3), 730-745. DOI: 10.1002/pc.23990
- Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548.
- Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97.
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052
- Guo, X.Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nanotubes", Compos. Struct., 135, 96-108. DOI: https://doi.org/10.1016/j.compstruct.2015.08.063
- Hao, Y.X., Zhang, W. and Ji, X.L. (2010), "Nonlinear dynamic response of functionally graded rectangular plates under different internal resonances", Math. Probl. Eng., 2010, 738648-1-12.
- Jangam, S., Raja, S. and Maheswar Gowd, B.U. (2016), "Influence of multiwall carbon nanotube alignment on vibration damping of nanocomposites", J. Reinf. Plast. Compos., 35(8), 617-627. https://doi.org/10.1177/0731684415626285
- Kazanci, Z. (2009), "Nonlinear transient response of a laminated composite plate under time-dependent pulses", Int. Conf. Recent Adv. Sp. Technol., 4, 125-130.
- Kumar, P. and Srinivas, J. (2014), "Numerical evaluation of effective elastic properties of CNT-reinforced polymers for interphase effects", Comput. Mater. Sci., 88, 139-144. https://doi.org/10.1016/j.commatsci.2014.03.002
- Kumar, P. and Srinivas, J. (2017), "Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layerwise formulation", Compos. Struct., 177, 158-170. https://doi.org/10.1016/j.compstruct.2017.06.055
- Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT - and graphene - reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", Int. J. Mech. Sci., 99, 208-217. https://doi.org/10.1016/j.ijmecsci.2015.05.014
- Malekzadeh, P. and Monajjemzadeh, S.M. (2013), "Dynamic response of functionally graded plates in thermal environment under moving load", Compos. Part B: Eng., 45(1), 1521-1533. https://doi.org/10.1016/j.compositesb.2012.09.022
- Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2018), "Vibrational behavior of sandwich plates with functionally graded wavy carbon nanotube-reinforced face sheets resting on Pasternak elastic foundation", J. Vib. Control, 24(11), 2327-2343. https://doi.org/10.1177/1077546316686227
- Najafi, F., Shojaeefard, M.H. and Saeidi Googarchin, H. (2016), "Nonlinear low-velocity impact response of functionally graded plate with nonlinear three-parameter elastic foundation in thermal field", Compos. Part B: Eng., 107, 123-140. https://doi.org/10.1016/j.compositesb.2016.09.070
- Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S.P.A., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015), "An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates", Int. J. Non-Linear Mech., 76, 190-202. https://doi.org/10.1016/j.ijnonlinmec.2015.06.003
- Phung-Van, P., Ferreira, A.J.M., Nguyen-Xuan, H. and Abdel Wahab, M. (2017a), "An isogeometric approach for sizedependent geometrically nonlinear transient analysis of functionally graded nanoplates", Compos. Part B: Eng., 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012
- Phung-Van, P., Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H. and Abdel-Wahab, M. (2017b), "Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads", Nonlinear Dyn., 87(2), 879-894. https://doi.org/10.1007/s11071-016-3085-6
- Rafiee, R. and Firouzbakht, V. (2014), "Multi-scale modeling of carbon nanotube reinforced polymers using irregular tessellation technique", Mech. Mater., 78, 74-84. https://doi.org/10.1016/j.mechmat.2014.07.021
- Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8-10), 884-907. https://doi.org/10.1016/j.mechmat.2005.06.029
- Sharma, A., Kumar, A., Susheel, C.K. and Kumar, R. (2016), "Smart damping of functionally graded nanotube reinforced composite rectangular plates", Compos. Struct., 155, 29-44. https://doi.org/10.1016/j.compstruct.2016.07.079
- Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., Int. J., 23(6), 623-631.
- Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
- Swain, A., Roy, T. and Nanda, B.K. (2017), "Vibration damping characteristics of carbon nanotubes-based thin hybrid composite spherical shell structures", Mech. Adv. Mater. Struct., 24(2), 95-113. https://doi.org/10.1080/15376494.2015.1107669
- Tahouneh, V. (2017), "Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates", Steel Compos. Struct., Int. J., 23(6), 657-668.
- Udupa, G., Rao, S.S. and Gangadharan, K.V. (2012), "Future applications of carbon nanotube reinforced functionally graded composite materials", Proc. Int. Conf. Adv. Eng. Sci. Manage., 1, 399-404.
- Wang, C.Y. and Zhang, L.C. (2008), "A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes", Nanotechnology, 19(7), 75705-1-5. https://doi.org/10.1088/0957-4484/19/7/075705
- Wang, Y.Y., Lam, K.Y. and Liu, G.R. (2001), "A strip element method for the transient analysis of symmetric laminated plates", Int. J. Solids Struct., 38(2), 241-259. https://doi.org/10.1016/S0020-7683(00)00035-4
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058
- Yeh, M.-K., Tai, N.-H. and Liu, J.-H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005
- Zhang, L.W., Xiao, L.N., Zou, G.L. and Liew, K.M. (2016), "Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method", Compos. Struct., 148, 144-154. https://doi.org/10.1016/j.compstruct.2016.04.006
- Zhang, L.., Lei, Z.X. and Liew, K.M. (2017), "Free vibration analysis of FG-CNT reinforced composite straight-sided quadrilateral plates resting on elastic foundations using the IMLS-Ritz method", J. Vib. Control, 23(6), 1026-1043. https://doi.org/10.1177/1077546315587804
Cited by
- Free vibration analysis of angle-ply laminated composite and soft core sandwich plates vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.663
- Combined effect of carbon nanotubes distribution and orientation on functionally graded nanocomposite beams using finite element analysis vol.8, pp.1, 2018, https://doi.org/10.1088/2053-1591/abc773