Figure 1. Box-Behnken model of response surface methodology.
Figure 2. FAME content of waste cooking oil based biodiesel with various variables in microwave assisted solvent extraction.
Figure 3. 3D surface & contour graph of FAME content according to various variables (Acid Value = 1.30 g KOH/g).
Figure 4. 3D surface & contour graph of FAME content according to various variables (Acid Value = 2.00 g KOH/g).
Figure 5. Scatter plot of FAME content of waste cooking oil based biodiesel.
Figure 6. Multiple optimization graph of FAME content.
Table 1. Basic Experiment Setup of Box-Behnken Design Medel
참고문헌
- J. Chen, R. D. Tyagi, J. Li, X. Zhang, P. Drogui, and F. Sun, Economic assessment of biodiesel production from wastewater sludge, Bioresour. Technol., 253, 41-48 (2018). https://doi.org/10.1016/j.biortech.2018.01.016
- J. V. Gerpen, Biodiesel processing and production, Fuel Process. Technol., 86(10), 1097-1107 (2005). https://doi.org/10.1016/j.fuproc.2004.11.005
- S. K. Vijayan, M. N. Victor, A. Sudharsanam, W. K. Chinaraj, and V. Nagarajan, Winterization studies of different vegetable oil biodiesel, Bioresour. Technol. Rep., 1, 50-55 (2018). https://doi.org/10.1016/j.biteb.2018.02.005
- T. Fazal, A. Mushtaq, F. Rehman, A. U. Khan, N. Rashid, W. Farooq, M. S. U. Rehaman, and J. Xu, Bioremediation of textile wastewater and successive biodiesel production using microalgae, Renew. Sustain. Energy Rev., 82, 3107-3126 (2018). https://doi.org/10.1016/j.rser.2017.10.029
- Y. Zhang, M. A. Dube, D. D. McLean, and M. Kates, Biodiesel production from waste cooking oil : 1. Process design and technological assessment, Bioresour. Technol., 89, 1-16 (2003). https://doi.org/10.1016/S0960-8524(03)00040-3
- S. M. Hosseini, N. Fallah, and S. J. Royaee, Optimization of photocatalytic degradation of real textile dye house wastewater by response surface methodology, Water Sci. Technol., 74(9), 1999-2009 (2016). https://doi.org/10.2166/wst.2016.216
- I. K. Hong, H. Jeon, H. Kim, and S. B. Lee, Preparation of waste cooking oil based biodiesel using microwave irradiation energy, J. Ind. Eng. Chem., 42, 107-112 (2016). https://doi.org/10.1016/j.jiec.2016.07.035
- S. S. Garud, I. A. Karimi, and M. Kraft, Design of computer experiments : A review, Comput. Chem. Eng., 106, 71-95 (2017). https://doi.org/10.1016/j.compchemeng.2017.05.010
- H. Toyota, T. Asai, and N. Oku, Process optimization by use of design of experiments: Application for liposomalization of FK506, Eur. J. Pharm. Sci., 102, 196-202 (2017). https://doi.org/10.1016/j.ejps.2017.03.007
- S. Hong, W. J. Lee, and S. B. Lee, Optimization of waste cooking oil-based biodiesel production process using central composite design model, Appl. Chem. Eng., 28(5), 559-564 (2017). https://doi.org/10.14478/ace.2017.1075
- P. Biniaz, M. Farsi, and M. R. Rahimpour, Demulsification of water in oil emulsion using ionic liquids: Statistical modeling and optimization, Fuel, 184, 325-333 (2016). https://doi.org/10.1016/j.fuel.2016.06.093
- J. Sharma, S. P. Anand, V. Pruthi, A. S. Chaddha, J. Bhatia, and B. S. Kaith, RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies, Mater. Chem. Phys., 196, 270-283 (2017). https://doi.org/10.1016/j.matchemphys.2017.04.042
- Y. H. Tan, M. O. Abdullah, and C. Nolasco-Hipolito, Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO, Renew. Energy, 114, 437-447 (2017). https://doi.org/10.1016/j.renene.2017.07.024
- M. O. Saeed, K. Azizli, M. H. Isa, and M. J. K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8, e7-e16 (2015). https://doi.org/10.1016/j.jwpe.2014.11.001