DOI QR코드

DOI QR Code

마이크로웨이브 에너지를 이용한 폐식용유 원료 바이오디젤의 제조: Box-Behnken 설계를 이용한 최적화

Preparation of Waste Cooking Oil-based Biodiesel Using Microwave Energy: Optimization by Box-Behnken Design Model

  • 투고 : 2018.08.16
  • 심사 : 2018.09.18
  • 발행 : 2018.12.10

초록

본 연구에서는 마이크로웨이브 에너지를 이용하여 폐식용유로부터 바이오디젤을 제조하고, Box-Behnken 설계를 이용하여 공정의 최적화를 설계하였다. Box-Behnken 설계의 계량인자는 메탄올/유지 몰비, 마이크로웨이브 조사세기, 반응시간으로 설정하였고, 계측인자는 FAME 함량이다. 기초실험 결과 산가에 관계없이 계량인자인 메탄올/유지 몰비(8~10)와 반응시간(4~6 min)의 범위는 동일하게 설정하였으며, 마이크로웨이브 조사세기의 경우 산가 1.30 mg KOH/g (8~12 W/g)와 2.00 mg KOH/g (10~14 W/g)로 설정하였다. Box-Behnken 설계에 의해 예측된 바이오디젤 제조공정의 최적조건은 산가 1.30 mg KOH/g인 폐식용유의 경우 메탄올/유지 몰비(7.58), 마이크로웨이브 조사세기(10.26 W/g), 반응시간(5.1 min)이었고, 산가 2.00 mg KOH/g의 경우 메탄올/유지 몰비(7.78), 마이크로웨이브 조사세기(12.18 W/g), 반응시간(5.1 min)로 산출되었다. 이때 예측 FAME 함량은 각각 98.4, 96.3%로 나타났으며, 실제 실험을 통한 오차율은 0.3% 이하로 나타났다. 따라서 마이크로웨이브를 이용한 바이오디젤의 제조공정에 Box-Behnken 설계를 적용할 수 있을 것으로 사료된다.

In this study, an optimized process for the waste cooking oil based biodiesel production using microwave energy was designed by using Box-Behnken design model. The process variables were chosen as a mole ratio of the methanol to oil, microwave power, and reaction time. Fatty acid methyl ester (FAME) content was then measured. Through the results of basic experiments, the range of optimum operation variables for the Box-Behnken design model, such as the methanol/oil mole ratio and reaction time, were set as between 8 to 10 and between 4 to 6 min, respectively. Ranges of the microwave power were set as from 8 to 12 W/g for 1.30 mg of KOH/g, acid value, while from 10 to 14 W/g for 2.00 mg of KOH/g, acid value. The optimum methanol/oil mole ratio, microwave power, and reaction time were reduced to 7.58, 10.26 W/g, and 5.1 min, respectively, for 1.30 mg KOH/g of acid value. Also, the optimum methanol/oil mole ratio, microwave power, and reaction time were 7.78, 12.18 W/g, and 5.1 min, respectively, for 2.00 mg KOH/g of acid value. Predicted FAME contents were 98.4% and 96.3%, with error rates of less than 0.3%. Therefore, when the optimized process of biodiesel production using microwave energy was applied to the Box-Behnken design model, the low error rate could be obtained.

키워드

GOOOB2_2018_v29n6_746_f0001.png 이미지

Figure 1. Box-Behnken model of response surface methodology.

GOOOB2_2018_v29n6_746_f0002.png 이미지

Figure 2. FAME content of waste cooking oil based biodiesel with various variables in microwave assisted solvent extraction.

GOOOB2_2018_v29n6_746_f0003.png 이미지

Figure 3. 3D surface & contour graph of FAME content according to various variables (Acid Value = 1.30 g KOH/g).

GOOOB2_2018_v29n6_746_f0004.png 이미지

Figure 4. 3D surface & contour graph of FAME content according to various variables (Acid Value = 2.00 g KOH/g).

GOOOB2_2018_v29n6_746_f0005.png 이미지

Figure 5. Scatter plot of FAME content of waste cooking oil based biodiesel.

GOOOB2_2018_v29n6_746_f0006.png 이미지

Figure 6. Multiple optimization graph of FAME content.

Table 1. Basic Experiment Setup of Box-Behnken Design Medel

GOOOB2_2018_v29n6_746_t0001.png 이미지

참고문헌

  1. J. Chen, R. D. Tyagi, J. Li, X. Zhang, P. Drogui, and F. Sun, Economic assessment of biodiesel production from wastewater sludge, Bioresour. Technol., 253, 41-48 (2018). https://doi.org/10.1016/j.biortech.2018.01.016
  2. J. V. Gerpen, Biodiesel processing and production, Fuel Process. Technol., 86(10), 1097-1107 (2005). https://doi.org/10.1016/j.fuproc.2004.11.005
  3. S. K. Vijayan, M. N. Victor, A. Sudharsanam, W. K. Chinaraj, and V. Nagarajan, Winterization studies of different vegetable oil biodiesel, Bioresour. Technol. Rep., 1, 50-55 (2018). https://doi.org/10.1016/j.biteb.2018.02.005
  4. T. Fazal, A. Mushtaq, F. Rehman, A. U. Khan, N. Rashid, W. Farooq, M. S. U. Rehaman, and J. Xu, Bioremediation of textile wastewater and successive biodiesel production using microalgae, Renew. Sustain. Energy Rev., 82, 3107-3126 (2018). https://doi.org/10.1016/j.rser.2017.10.029
  5. Y. Zhang, M. A. Dube, D. D. McLean, and M. Kates, Biodiesel production from waste cooking oil : 1. Process design and technological assessment, Bioresour. Technol., 89, 1-16 (2003). https://doi.org/10.1016/S0960-8524(03)00040-3
  6. S. M. Hosseini, N. Fallah, and S. J. Royaee, Optimization of photocatalytic degradation of real textile dye house wastewater by response surface methodology, Water Sci. Technol., 74(9), 1999-2009 (2016). https://doi.org/10.2166/wst.2016.216
  7. I. K. Hong, H. Jeon, H. Kim, and S. B. Lee, Preparation of waste cooking oil based biodiesel using microwave irradiation energy, J. Ind. Eng. Chem., 42, 107-112 (2016). https://doi.org/10.1016/j.jiec.2016.07.035
  8. S. S. Garud, I. A. Karimi, and M. Kraft, Design of computer experiments : A review, Comput. Chem. Eng., 106, 71-95 (2017). https://doi.org/10.1016/j.compchemeng.2017.05.010
  9. H. Toyota, T. Asai, and N. Oku, Process optimization by use of design of experiments: Application for liposomalization of FK506, Eur. J. Pharm. Sci., 102, 196-202 (2017). https://doi.org/10.1016/j.ejps.2017.03.007
  10. S. Hong, W. J. Lee, and S. B. Lee, Optimization of waste cooking oil-based biodiesel production process using central composite design model, Appl. Chem. Eng., 28(5), 559-564 (2017). https://doi.org/10.14478/ace.2017.1075
  11. P. Biniaz, M. Farsi, and M. R. Rahimpour, Demulsification of water in oil emulsion using ionic liquids: Statistical modeling and optimization, Fuel, 184, 325-333 (2016). https://doi.org/10.1016/j.fuel.2016.06.093
  12. J. Sharma, S. P. Anand, V. Pruthi, A. S. Chaddha, J. Bhatia, and B. S. Kaith, RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies, Mater. Chem. Phys., 196, 270-283 (2017). https://doi.org/10.1016/j.matchemphys.2017.04.042
  13. Y. H. Tan, M. O. Abdullah, and C. Nolasco-Hipolito, Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO, Renew. Energy, 114, 437-447 (2017). https://doi.org/10.1016/j.renene.2017.07.024
  14. M. O. Saeed, K. Azizli, M. H. Isa, and M. J. K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8, e7-e16 (2015). https://doi.org/10.1016/j.jwpe.2014.11.001