Figure 1. Fractionation scheme of P. frutescens var. acuta 50% EtOH extract and ethyl acetate fraction.
Figure 2. Free radical scavenging activities of 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta and (+)-α-tocopherol. Data are presented as mean ± S.D. *p < 0.05 compared with (+)-α- tocopherol.
Figure 3. ROS scavenging activities of 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta and L-ascorbic acid in Fe3+-EDTA/H2O2 system by luminol-dependent chemiluminescence assay. Data are presented as mean ± S.D. *p < 0.05 and **p < 0.01 compared with L-ascorbic acid.
Figure 4. Effects of 50% EtOH extract and EtoAc fraction from P. frutescens var. acuta on HaCaT cells viability. HaCaT cells were treated with different concentration of samples for 24 h, and cytotoxicity was then determined by the MTT assay. Data are presented as mean ± S.D.
Figure 5. Effects of 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta on UVB-induced ROS generation in HaCaT cells. HaCaT cells were treated with different concentration of 50% EtOH extract and EtOAC fraction for 24 h, after being stimulated with UVB. ROS generation was measured by the fluorescence intensity of H2DCF-DA. Data are presented as mean ± S.D. *p < 0.05 compared with UVB treated control in 50% EtOH extract dose-treated group, #p < 0.05 compared with UVB treated control in EtOAc fraction dose-treated groups.
Figure 6. 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta treatment protect HaCaT cells against UVB-mediated decreased cell viability. HaCaT cells were treated with different concentration of samples for 24 h after being exposed to oxidative stress. Data are presented as mean ± S.D. *p < 0.05 compared with untreated control in 50% EtOH extract dose-treated group, #p < 0.05 compared with untreated control in EtOAc fraction dose-treated groups.
Figure 7. TLC chromatogram of 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta and references. Eluent system; hexane : ethyl acetate : acetic acid = 24 : 14 : 5 (v/v), ① rosmarinic acid ② luteolin ③ 50% ethanol extract ④ ethyl acetate fraction ⑤ caffeic acid ⑥ apigenin ⑦ ethyl caffeate.
Figure 8. (a) Chromatogram of standards, (b) 50% EtOH extract, (c) EtOAc fraction from P. frutescens var. acuta extract at 254-400 nm. Peak 1, caffeic acid; peak 2, rosmarinic acid; peak 3, ethyl caffeate; peak 4, luteolin; peak 5, apigenin.
Table 1. HPLC Condition for Separation of 50% EtOH Extract and EtOAc Fraction of P. frutescens var. acuta Extract
Table 2. Minimum Inhibitory Concentration (MIC, μg/mL) and Minimum Bactericidal Concentration (MBC, μg/mL) of 50% EtOH Extract and Ethyl Acetate Fraction from P. frutescens var. acuta and Reference
Table 3. DPPH Radical Scavenging Activity of 50% EtOH Extract and Ethyl Acetate Fraction from P. frutescens var. acuta and Reference
Table 4. Reactive Oxygen Species Scavenging Activity of 50% EtOH Extract and Ethyl Acetate Fraction from P. frutescens var. acuta and Reference in Fe3+-EDTA/H2O2 System by Luminol-Dependent Chemiluminescence Assay
Table 5. Bioactive Compounds Contents of P. frutescens var. acuta 50% EtOH Extract and Ethyl Acetate Fraction
Table 6. LC/ESI-MS and UV Spectrum Characteristics of Ethyl Acetate Fraction from P. frutescens var. acuta Extract
참고문헌
- E. A. Grice and J. A. Segre, The skin microbiome, Nat. Rev. Microbiol., 9, 244-253 (2011). https://doi.org/10.1038/nrmicro2537
- M. R. Yi, A. L. Jeon, C. H. Kang, and H. J. Bu, Antioxidant, antimicrobial and anti-inflammatory activities of essential oil from Erigeron annuus L. flower, J. Korean Oil. Chem. Soc., 33, 717-725 (2016). https://doi.org/10.12925/jkocs.2016.33.4.717
- J. H. Kim, M. J. Kim, S. K. Choi, S. H. Bae, S. K. An, and Y. M. Yoon, Antioxidant and antimicrobial effects of lemon and eucalyptus essential oils against skin floras, J. Soc. Cosmet. Sci. Korea, 37, 303-308 (2011).
- E. Y. Choi, Effect of phenoxyethanol and alkane diol mixture on the antimicrobial activity and antiseptic ability in cosmetics, Korean J. Aesthet. Cosmetol., 13, 213-220 (2015).
- Y. H. Yeo and C. H. Park, Cosmetics preservation and moisturizing effect by methanol extracts of Scutellaria baicalensis George and Liriope platyphylla, Korean Soc. Biotechnol. Bioeng. J., 29, 372-379 (2014).
- S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review, Int. J. Cosmet. Sci., 27, 17-34 (2005). https://doi.org/10.1111/j.1467-2494.2004.00241.x
- A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16-29 (2015). https://doi.org/10.1016/j.arr.2015.01.001
- M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. J. Ma, A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter- Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol., 63, 41-51 (2001). https://doi.org/10.1016/S1011-1344(01)00201-9
- W. Y. Song and J. H. Choi, Total phenols, flavonoid contents, and antioxidant activity of Spirodela polyrhixa extracts, J. Life Sci., 27, 180-186 (2017). https://doi.org/10.5352/JLS.2017.27.2.180
- M. L. Soto, M. Parada, E. Falque, and H. Dominguez, Personal-care products formulated with natural antioxidant extracts, Cosmetics, 5, 13-22 (2018). https://doi.org/10.3390/cosmetics5010013
- C. Namngam and P. Pinsirodom, Antioxidant properties, selected enzyme inhibition capacities, and a cosmetic cream formulation of Thai mango seed kernel extracts, Trop. J. Pharm. Res., 16, 9-16 (2017). https://doi.org/10.4314/tjpr.v16i1.3
- E. C. Kim, S. Y. Ahn, E. S. Hong, G. H. Li, E. K. Kim, and K. H. Row, Extraction of whitening agents from natural plants and whitening effect, J. Korean Ind. Eng. Chem., 16, 348-353 (2005).
- C. A. Rice-evans, N. J. Miller, P. G. Bolwell, P. M. Bramley, and J. B. Pridha, The relative antioxidant activities of plant-derived polyphernolic flavonoids, Free Rad. Res., 22, 375-383 (1995). https://doi.org/10.3109/10715769509145649
- K. Griffiths, B. B. Aggarwal, R. B. Singh, H. S. Buttar, D. Wilson, and F. D. Meester, Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention, Diseases, 4, 28-42 (2016). https://doi.org/10.3390/diseases4030028
- M. H. Kim, W. W. Kang, N. H. Lee, D. J. Kwoen, and U. K. Choi, Antioxidant activities of extract with water and ethanol of Perilla frutescens var. acuta kudo leaf, J. Korean Soc. Appl. Biol. Chem., 50, 327-333 (2007).
- D. Y. Park and K. Y. Lee, Evaluation of the cosmeceutical activity of ethanol extracts from Perilla frutescens var. acuta, J. Korea Acad. Ind. Coop. Soc., 18, 513-517 (2017).
- J. S. You, S. Y. Kim, S. H. Kim, and T. Y. Shin. Antiallergic and anti-inflammatory effects of Perilla frutescens var. acuta. Korean J. Pharmacogn., 43, 163-166 (2012).
- J. S. Bae, M. R. Han, H. S. Shin, M. K. Kim, C. Y. Shin, D. H. Lee, and J. H. Chung, Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin, J. Ethnopharmacol., 195, 334-342 (2017). https://doi.org/10.1016/j.jep.2016.11.039
- M. H. Kim, N. H. Lee, M. H. Lee, D. J. Kwon, and U. K. Choi, Antimicrobial activity of aqueous ethanol extracts of Perilla frutescens var. acuta leaf, Korean J. Food. Cult., 22, 266-273 (2007).
- Y. Nakamura, Y. Ohto, A. Murakami, and H. Ohigashi, Superoxide scavenging activity of rosmarinic acid from Perilla frutescens britton var. acuta f. viridis, J. Agric. Food. Chem., 46, 4545-4550 (1998). https://doi.org/10.1021/jf980557m
- D. H. Kim, Y. C. Kim, and U. K. Choi, Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against Staphylococcus aureus using evolutionary operation factorial design technique, Int. J. Mol. Sci., 12, 2395-2407 (2011). https://doi.org/10.3390/ijms12042395
- M. Kim, Y. G. Park, H. J. Lee, S. J. Lim, and C. W. Nho, Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NF-kappaB and activation of AMPK/Nrf2 in HaCaT cells and human dermal fibroblasts, J. Agric. Food Chem., 63, 5428-5438 (2015). https://doi.org/10.1021/acs.jafc.5b00467
- R. C. Alves, A. S. G. Costa, M. Jerez, S. Casal, J. Sineiro, M. J. Nunez, and B. Oliveira, Antiradical activity, phenolic profile, and hydroxymethylfurfural in espresso coffee: Influence of technological factors, J. Agric. Food. Chem., 58, 12221-12229 (2010). https://doi.org/10.1021/jf1031229
- A. Rebaya, S. I. Belghith, B. Baghdikian, V. M. Leddet, F. Mabrouki, E. Olivier, J. K. Cherif, and M. T. Ayadi, Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae), J. Appl. Pharm. Sci., 5, 52-57 (2014).
- S. H. Park, J. S. Seong, K. S. Lee, Y. M. Park, S. H. Xuan, M. Y. Cha, H. C. Kang, and S. N. Park, Antioxidant and cellular protective effects of Parthenocissus tricuspidata stem extracts fermented by Lactobacillus pentosus, J. Soc. Cosmet. Sci. Korea, 43, 255-263 (2017).
- D. Stojiljkovic, D. Pablobic, and I. Arsic, Oxidative stress, skin aging and antioxidant therapy, Acta Fac. Med. Naissensis, 31, 207-217 (2014). https://doi.org/10.2478/afmnai-2014-0026
- A. Amaro-Ortiz, B. Yan, and J. A. D'Orazio, Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation, Molecules, 19, 6202-6219 (2015).
- H. A. Yu and C. D. Kim, Applicability of Lindera obtusiloba flower extracts as cosmetic ingredients, Asian. J. Beauty Cosmetol., 15, 132-144 (2017). https://doi.org/10.20402/ajbc.2016.0088
- M. J. Ha and S. H. You, Bioactive characteristics of extracts of Opuntia humifusa fruit as functional cosmetic ingredients, Asian. J. Beauty Cosmetol., 14, 463-472 (2016). https://doi.org/10.20402/ajbc.2016.0080
- L. Meng, Y. F. Lozano, E. M. Gaydou, and B. Li, Antioxidant activities of polyphenols extracted from Perilla frutescens varieties, Molecules, 14, 133-140 (2009).
- N. S. Kang and J. H. Lee, Characterisation of phenolic phytochemicals and quality changes related to the harvest times from the leaves of Korean purple perilla (Perilla frutescens), Food Chem., 124, 556-562 (2011). https://doi.org/10.1016/j.foodchem.2010.06.071
-
Y. M. Chiang, C. P. Lo, Y. P. Chen, S. Y. Wang, N. S. Yang, Y. H. Kuo, and L. F. Shyur, Ethyl caffeate suppresses NF-
${\kappa}$ B activation and its downstream inflammatory mediators, iNOS, COX-2, and$PGE_2$ in vitro of in mouse skin, Br. J. Pharmacol., 146, 352-363 (2005). https://doi.org/10.1038/sj.bjp.0706343