DOI QR코드

DOI QR Code

자소엽 추출물의 항균 및 항산화 효과와 성분분석

Antimicrobial and Antioxidant Activities of Perilla frutescens var. acuta Extract and Its Fraction and Their Component Analyses

  • 정효진 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 현송화 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 송바름 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 이상래 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 이윤주 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Jeong, Hyo Jin (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Xuan, Song Hua (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Song, Ba Reum (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Lee, Sang Lae (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Lee, Yun Ju (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology)
  • 투고 : 2018.07.28
  • 심사 : 2018.09.04
  • 발행 : 2018.12.10

초록

본 연구에서는 자소엽의 50% 에탄올 추출물 및 에틸아세테이트 분획을 제조하여 항균 및 항산화 활성을 평가하고 성분 분석을 진행하였다. 피부 상재균에 대한 항균 활성을 측정한 결과, S. aureus 및 P. aeruginosa에 대해서 에틸아세테이트 분획의 최소저해농도(minimum inhibitory concentration, MIC) 값은 모두 $78{\mu}g/mL$로 나타나 항균 활성이 매우 우수함을 확인하였다. 2,2-diphenyl-1-picrylhydrazyl (DPPH) 라디칼 소거 활성($FSC_{50}$)과 $Fe^{3+}-EDTA/H_2O_2$계에서의 활성산소 소거 활성($OSC_{50}$) 측정 결과 50% 에탄올 추출물 보다 에틸아세테이트 분획에서 높은 활성을 보였고 각각 25.90, $1.40{\mu}g/mL$로 나타났다. HaCaT 세포에서 세포 내 ROS 억제 효능은 최고 농도인 $32{\mu}g/mL$에서 50% 에탄올 추출물과 에틸아세테이트 분획 각각 PC군 대비 28.6, 40.7%의 감소율을 보였고 UVB에 대한 세포보호효과는 에틸아세테이트 분획의 $2.0-16.0{\mu}g/mL$ 농도에서 농도 의존적으로 나타났다. 자소엽 추출물의 에틸아세테이트 분획을 이용한 성분 분석 결과 rosmarinic acid, luteolin, apigenin, caffeic acid 및 ethyl caffeate가 있음을 확인하였다. 이상의 결과들은 자소엽 추출물 및 분획이 항균 및 항산화 효과를 가짐을 보여주며 외부 환경으로부터 피부를 보호할 수 있는 천연 소재로써 화장품 분야에서 응용 가능성이 있음을 시사한다.

In this study, antimicrobial and antioxidative activities of Perilla frutescens var. acuta were investigated with 50% ethanol and the ethyl acetate fraction and also the components were analyzed. The minimum inhibitory concentration (MIC) of the ethyl acetate fraction for both Staphylococcus aureus and Pseudomonas aeruginosa were $78{\mu}g/mL$, indicating high antimicrobial effects. The free radical scavenging activity ($FSC_{50}$) and the reactive oxygen species (ROS) scavenging activity ($OSC_{50}$) in $Fe^{3+}-EDTA/H_2O_2$ system values of the ethyl acetate fraction were $25.90{\mu}g/mL$ and $1.40{\mu}g/mL$, respectively. After the cell damage induced by $400mJ/cm^2$ UVB irradiation, the cytoprotective effect of the ethyl acetate fraction of P. frutescens var. acuta showed the concentration dependent manner ranging from 2.0 to $16.0{\mu}g/mL$. The intracellular ROS inhibitory activity in HaCaT cells decreased to 28.6% and 40.7% for the 50% ethanol extract and ethyl acetate fraction, respectively at the concentration of $32{\mu}g/mL$. Components of rosmarinic acid, luteolin, apigenin, caffeic acid and ethyl caffeate were identified in the ethyl acetate fraction. These results suggest that the extract and fraction of P. frutescens var. acuta may be applied to the field of cosmetics as a natural material that protects the skin from an external environment by having antimicrobial and antioxidative activities.

키워드

GOOOB2_2018_v29n6_716_f0001.png 이미지

Figure 1. Fractionation scheme of P. frutescens var. acuta 50% EtOH extract and ethyl acetate fraction.

GOOOB2_2018_v29n6_716_f0002.png 이미지

Figure 2. Free radical scavenging activities of 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta and (+)-α-tocopherol. Data are presented as mean ± S.D. *p < 0.05 compared with (+)-α- tocopherol.

GOOOB2_2018_v29n6_716_f0003.png 이미지

Figure 3. ROS scavenging activities of 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta and L-ascorbic acid in Fe3+-EDTA/H2O2 system by luminol-dependent chemiluminescence assay. Data are presented as mean ± S.D. *p < 0.05 and **p < 0.01 compared with L-ascorbic acid.

GOOOB2_2018_v29n6_716_f0004.png 이미지

Figure 4. Effects of 50% EtOH extract and EtoAc fraction from P. frutescens var. acuta on HaCaT cells viability. HaCaT cells were treated with different concentration of samples for 24 h, and cytotoxicity was then determined by the MTT assay. Data are presented as mean ± S.D.

GOOOB2_2018_v29n6_716_f0005.png 이미지

Figure 5. Effects of 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta on UVB-induced ROS generation in HaCaT cells. HaCaT cells were treated with different concentration of 50% EtOH extract and EtOAC fraction for 24 h, after being stimulated with UVB. ROS generation was measured by the fluorescence intensity of H2DCF-DA. Data are presented as mean ± S.D. *p < 0.05 compared with UVB treated control in 50% EtOH extract dose-treated group, #p < 0.05 compared with UVB treated control in EtOAc fraction dose-treated groups.

GOOOB2_2018_v29n6_716_f0006.png 이미지

Figure 6. 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta treatment protect HaCaT cells against UVB-mediated decreased cell viability. HaCaT cells were treated with different concentration of samples for 24 h after being exposed to oxidative stress. Data are presented as mean ± S.D. *p < 0.05 compared with untreated control in 50% EtOH extract dose-treated group, #p < 0.05 compared with untreated control in EtOAc fraction dose-treated groups.

GOOOB2_2018_v29n6_716_f0007.png 이미지

Figure 7. TLC chromatogram of 50% EtOH extract and EtOAc fraction from P. frutescens var. acuta and references. Eluent system; hexane : ethyl acetate : acetic acid = 24 : 14 : 5 (v/v), ① rosmarinic acid ② luteolin ③ 50% ethanol extract ④ ethyl acetate fraction ⑤ caffeic acid ⑥ apigenin ⑦ ethyl caffeate.

GOOOB2_2018_v29n6_716_f0008.png 이미지

Figure 8. (a) Chromatogram of standards, (b) 50% EtOH extract, (c) EtOAc fraction from P. frutescens var. acuta extract at 254-400 nm. Peak 1, caffeic acid; peak 2, rosmarinic acid; peak 3, ethyl caffeate; peak 4, luteolin; peak 5, apigenin.

Table 1. HPLC Condition for Separation of 50% EtOH Extract and EtOAc Fraction of P. frutescens var. acuta Extract

GOOOB2_2018_v29n6_716_t0001.png 이미지

Table 2. Minimum Inhibitory Concentration (MIC, μg/mL) and Minimum Bactericidal Concentration (MBC, μg/mL) of 50% EtOH Extract and Ethyl Acetate Fraction from P. frutescens var. acuta and Reference

GOOOB2_2018_v29n6_716_t0002.png 이미지

Table 3. DPPH Radical Scavenging Activity of 50% EtOH Extract and Ethyl Acetate Fraction from P. frutescens var. acuta and Reference

GOOOB2_2018_v29n6_716_t0003.png 이미지

Table 4. Reactive Oxygen Species Scavenging Activity of 50% EtOH Extract and Ethyl Acetate Fraction from P. frutescens var. acuta and Reference in Fe3+-EDTA/H2O2 System by Luminol-Dependent Chemiluminescence Assay

GOOOB2_2018_v29n6_716_t0004.png 이미지

Table 5. Bioactive Compounds Contents of P. frutescens var. acuta 50% EtOH Extract and Ethyl Acetate Fraction

GOOOB2_2018_v29n6_716_t0005.png 이미지

Table 6. LC/ESI-MS and UV Spectrum Characteristics of Ethyl Acetate Fraction from P. frutescens var. acuta Extract

GOOOB2_2018_v29n6_716_t0006.png 이미지

참고문헌

  1. E. A. Grice and J. A. Segre, The skin microbiome, Nat. Rev. Microbiol., 9, 244-253 (2011). https://doi.org/10.1038/nrmicro2537
  2. M. R. Yi, A. L. Jeon, C. H. Kang, and H. J. Bu, Antioxidant, antimicrobial and anti-inflammatory activities of essential oil from Erigeron annuus L. flower, J. Korean Oil. Chem. Soc., 33, 717-725 (2016). https://doi.org/10.12925/jkocs.2016.33.4.717
  3. J. H. Kim, M. J. Kim, S. K. Choi, S. H. Bae, S. K. An, and Y. M. Yoon, Antioxidant and antimicrobial effects of lemon and eucalyptus essential oils against skin floras, J. Soc. Cosmet. Sci. Korea, 37, 303-308 (2011).
  4. E. Y. Choi, Effect of phenoxyethanol and alkane diol mixture on the antimicrobial activity and antiseptic ability in cosmetics, Korean J. Aesthet. Cosmetol., 13, 213-220 (2015).
  5. Y. H. Yeo and C. H. Park, Cosmetics preservation and moisturizing effect by methanol extracts of Scutellaria baicalensis George and Liriope platyphylla, Korean Soc. Biotechnol. Bioeng. J., 29, 372-379 (2014).
  6. S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review, Int. J. Cosmet. Sci., 27, 17-34 (2005). https://doi.org/10.1111/j.1467-2494.2004.00241.x
  7. A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16-29 (2015). https://doi.org/10.1016/j.arr.2015.01.001
  8. M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. J. Ma, A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter- Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol., 63, 41-51 (2001). https://doi.org/10.1016/S1011-1344(01)00201-9
  9. W. Y. Song and J. H. Choi, Total phenols, flavonoid contents, and antioxidant activity of Spirodela polyrhixa extracts, J. Life Sci., 27, 180-186 (2017). https://doi.org/10.5352/JLS.2017.27.2.180
  10. M. L. Soto, M. Parada, E. Falque, and H. Dominguez, Personal-care products formulated with natural antioxidant extracts, Cosmetics, 5, 13-22 (2018). https://doi.org/10.3390/cosmetics5010013
  11. C. Namngam and P. Pinsirodom, Antioxidant properties, selected enzyme inhibition capacities, and a cosmetic cream formulation of Thai mango seed kernel extracts, Trop. J. Pharm. Res., 16, 9-16 (2017). https://doi.org/10.4314/tjpr.v16i1.3
  12. E. C. Kim, S. Y. Ahn, E. S. Hong, G. H. Li, E. K. Kim, and K. H. Row, Extraction of whitening agents from natural plants and whitening effect, J. Korean Ind. Eng. Chem., 16, 348-353 (2005).
  13. C. A. Rice-evans, N. J. Miller, P. G. Bolwell, P. M. Bramley, and J. B. Pridha, The relative antioxidant activities of plant-derived polyphernolic flavonoids, Free Rad. Res., 22, 375-383 (1995). https://doi.org/10.3109/10715769509145649
  14. K. Griffiths, B. B. Aggarwal, R. B. Singh, H. S. Buttar, D. Wilson, and F. D. Meester, Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention, Diseases, 4, 28-42 (2016). https://doi.org/10.3390/diseases4030028
  15. M. H. Kim, W. W. Kang, N. H. Lee, D. J. Kwoen, and U. K. Choi, Antioxidant activities of extract with water and ethanol of Perilla frutescens var. acuta kudo leaf, J. Korean Soc. Appl. Biol. Chem., 50, 327-333 (2007).
  16. D. Y. Park and K. Y. Lee, Evaluation of the cosmeceutical activity of ethanol extracts from Perilla frutescens var. acuta, J. Korea Acad. Ind. Coop. Soc., 18, 513-517 (2017).
  17. J. S. You, S. Y. Kim, S. H. Kim, and T. Y. Shin. Antiallergic and anti-inflammatory effects of Perilla frutescens var. acuta. Korean J. Pharmacogn., 43, 163-166 (2012).
  18. J. S. Bae, M. R. Han, H. S. Shin, M. K. Kim, C. Y. Shin, D. H. Lee, and J. H. Chung, Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin, J. Ethnopharmacol., 195, 334-342 (2017). https://doi.org/10.1016/j.jep.2016.11.039
  19. M. H. Kim, N. H. Lee, M. H. Lee, D. J. Kwon, and U. K. Choi, Antimicrobial activity of aqueous ethanol extracts of Perilla frutescens var. acuta leaf, Korean J. Food. Cult., 22, 266-273 (2007).
  20. Y. Nakamura, Y. Ohto, A. Murakami, and H. Ohigashi, Superoxide scavenging activity of rosmarinic acid from Perilla frutescens britton var. acuta f. viridis, J. Agric. Food. Chem., 46, 4545-4550 (1998). https://doi.org/10.1021/jf980557m
  21. D. H. Kim, Y. C. Kim, and U. K. Choi, Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against Staphylococcus aureus using evolutionary operation factorial design technique, Int. J. Mol. Sci., 12, 2395-2407 (2011). https://doi.org/10.3390/ijms12042395
  22. M. Kim, Y. G. Park, H. J. Lee, S. J. Lim, and C. W. Nho, Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NF-kappaB and activation of AMPK/Nrf2 in HaCaT cells and human dermal fibroblasts, J. Agric. Food Chem., 63, 5428-5438 (2015). https://doi.org/10.1021/acs.jafc.5b00467
  23. R. C. Alves, A. S. G. Costa, M. Jerez, S. Casal, J. Sineiro, M. J. Nunez, and B. Oliveira, Antiradical activity, phenolic profile, and hydroxymethylfurfural in espresso coffee: Influence of technological factors, J. Agric. Food. Chem., 58, 12221-12229 (2010). https://doi.org/10.1021/jf1031229
  24. A. Rebaya, S. I. Belghith, B. Baghdikian, V. M. Leddet, F. Mabrouki, E. Olivier, J. K. Cherif, and M. T. Ayadi, Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae), J. Appl. Pharm. Sci., 5, 52-57 (2014).
  25. S. H. Park, J. S. Seong, K. S. Lee, Y. M. Park, S. H. Xuan, M. Y. Cha, H. C. Kang, and S. N. Park, Antioxidant and cellular protective effects of Parthenocissus tricuspidata stem extracts fermented by Lactobacillus pentosus, J. Soc. Cosmet. Sci. Korea, 43, 255-263 (2017).
  26. D. Stojiljkovic, D. Pablobic, and I. Arsic, Oxidative stress, skin aging and antioxidant therapy, Acta Fac. Med. Naissensis, 31, 207-217 (2014). https://doi.org/10.2478/afmnai-2014-0026
  27. A. Amaro-Ortiz, B. Yan, and J. A. D'Orazio, Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation, Molecules, 19, 6202-6219 (2015).
  28. H. A. Yu and C. D. Kim, Applicability of Lindera obtusiloba flower extracts as cosmetic ingredients, Asian. J. Beauty Cosmetol., 15, 132-144 (2017). https://doi.org/10.20402/ajbc.2016.0088
  29. M. J. Ha and S. H. You, Bioactive characteristics of extracts of Opuntia humifusa fruit as functional cosmetic ingredients, Asian. J. Beauty Cosmetol., 14, 463-472 (2016). https://doi.org/10.20402/ajbc.2016.0080
  30. L. Meng, Y. F. Lozano, E. M. Gaydou, and B. Li, Antioxidant activities of polyphenols extracted from Perilla frutescens varieties, Molecules, 14, 133-140 (2009).
  31. N. S. Kang and J. H. Lee, Characterisation of phenolic phytochemicals and quality changes related to the harvest times from the leaves of Korean purple perilla (Perilla frutescens), Food Chem., 124, 556-562 (2011). https://doi.org/10.1016/j.foodchem.2010.06.071
  32. Y. M. Chiang, C. P. Lo, Y. P. Chen, S. Y. Wang, N. S. Yang, Y. H. Kuo, and L. F. Shyur, Ethyl caffeate suppresses NF-${\kappa}$B activation and its downstream inflammatory mediators, iNOS, COX-2, and $PGE_2$ in vitro of in mouse skin, Br. J. Pharmacol., 146, 352-363 (2005). https://doi.org/10.1038/sj.bjp.0706343