DOI QR코드

DOI QR Code

강우자료의 시간해상도에 따른 강우 분해 성능 평가

Performance Evaluation of Rainfall Disaggregation according to Temporal Scale of Rainfall Data

  • 이정훈 (부경대학교 환경연구소) ;
  • 장주형 (국립환경과학원 물환경평가연구과) ;
  • 김상단 (부경대학교 환경공학과)
  • Lee, Jeonghoon (Institute of Environmental Research, Pukyong National University) ;
  • Jang, Juhyoung (Water Quality Assessment Research Department, National Institute of Environmental Research) ;
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2018.09.04
  • 심사 : 2018.10.15
  • 발행 : 2018.11.30

초록

본 연구에서는 다양한 시간해상도(3-, 6-, 12-, 24-hr)를 가지는 강우자료를 1-hr 강우자료로 분해하여 강우 분해기법의 성능을 평가한다. 강우 분해기법은 추계학적 점 강우 모형인 Neyman-Scott Rectangular Pulse Model(NSRPM)에서 생성된 데이터베이스를 기반으로 수행된다. 기상청 울산, 창원, 부산, 밀양지점의 7월 시간강우자료를 이용하여 분석을 수행하였다. 연구결과, 강우 분해기법은 강우의 주요 통계치뿐만 아니라 공간상관성도 고려할 수 있는 뛰어난 성능을 보여주었다. 또한, 일단위 시간해상도의 미래 기후변화 시나리오가 가지는 불확실성을 간접적으로 살펴보았다. 강우 분해기법은 미래 기후변화 시나리오에 적용된다면 효과적인 미래 유역관리에 도움이 되리라 기대된다.

In this study, rainfall data with various temporal scales (3-, 6-, 12-, 24-hr) are disaggregated into 1-hourly rainfall data to evaluate the performance of rainfall disaggregation technique. The rainfall disaggregation technique is based on a database generated by the stochastic point rainfall model, the Neyman-Scott Rectangular Pulse Model (NSRPM). Performance evaluation is carried out using July rainfall data of Ulsan, Changwon, Busan and Milyang weather stations in Korea. As a result, the rainfall disaggregation technique showed excellent performance that can consider not only the major statistics of rainfall but also the spatial correlation. It also indirectly shows the uncertainty of future climate change scenarios with daily temporal scale. The rainfall disaggregation technique is expected to disaggregate the future climate change scenarios, and to be effective in the future watershed management.

키워드

HKSJBV_2018_v20n4_345_f0001.png 이미지

Fig. 1. Location of meteorological stations used in the study.

HKSJBV_2018_v20n4_345_f0003.png 이미지

Fig. 2. Performance evaluation on mean of disaggregated rainfall.

HKSJBV_2018_v20n4_345_f0004.png 이미지

Fig. 3. Performance evaluation on variation of disaggregated rainfall.

HKSJBV_2018_v20n4_345_f0005.png 이미지

Fig. 4. Frequency analysis of disaggregated rainfall : 30yr Return Period.

HKSJBV_2018_v20n4_345_f0006.png 이미지

Fig. 5. Correlation analysis of disaggregated rainfall.

HKSJBV_2018_v20n4_345_f0007.png 이미지

Fig. 6. Frequency analysis of disaggregated rainfall : Nakdong estuary basin.

참고문헌

  1. Chadwick, R., Coppola, E. and Giorgi, F. (2011) An artificial neural network technique for downscaling GCM outputs to RCM spatial scale, Nonlin. Processes Geophys., 18, pp. 1013-1028, [DOI: 10.5194/npg-18-1013-2011].
  2. Choi, C., Cho, S., Park, M.J., and Kim, S. (2012) Overflow risk analysis for designing a nonpoint sources control detention, Water Environ Res., 84(5), pp. 434-440, [DOI: https://doi.org/10.2175/106143012X13373550426959].
  3. Eden, J. M., M. Widmann, D. Maraun, and M. Vrac (2014), Comparison of GCM- and RCM-simulated precipitation following stochastic postprocessing, J. Geophys. Res. Atmos., 119, pp. 11,040-11,053, [DOI: 10.1002/2014JD021732].
  4. Kim, K., Choi, J. Lee, J. and Kim, S. (2018) Effect of RCM Temporal Resolution on Estimating Future IDF Curves, J. Korean Soc. Hazard Mitig., 18(4), pp. 341-352, [DOI: https://doi.org/10.9798/KOSGAM.2018.18.4.341].
  5. Kim, S., and Han, S. (2010) Urban stormwater capture curve using three-parameter mixed exponential probability density function and NRCS runoff curve number method, Water Environ Res., 82(1), pp. 43-50, [DOI: https://doi.org/10.2175/106143009X447939].
  6. Kossieris, P., Makropoulos, C. , Onof, C. and Koutsoyiannis, D. (2018) A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, J. of Hydrology, 556, pp. 980-992, [DOI: http://dx.doi.org/10.1016/j.jhydrol.2016.07.015].
  7. Koutsoyiannis, D. and Onof, C. (2001) Rainfall disaggregation using adjusting procedures on a Poisson cluster model, J. of Hydrology. 246(1-4), pp. 109-122, [DOI: https://doi.org/10.1016/S0022-1694(01)00363-8].
  8. Lee, J. and Kim, S. (2018) Temporal Disaggregation of Daily Rainfall data using Stochastic Point Rainfall Model, J. Korean Soc. Hazard Mitig., 18(2), pp. 493-503, [DOI: https://doi.org/10.9798/KOSGAM.2018.18.2.493].
  9. Lee, O., Choi, J., Jang, S. and Kim, S. (2017) Application of Stochastic Point Rainfall Model for Temporal Downscaling of Daily Precipitation Data. J. Korean Soc. Hazard Mitig., 17(1), pp. 323-337, [DOI: https://doi.org/10.9798/KOSHAM.2017.17.1.323].
  10. Lombardo, F., Volpi, E., and Koutsoyiannis, D. (2012). Rainfall downscaling in time: Theoretical and empirical comparison between multifractal and Hurst-Kolmogorv discrete random cascades, Hydrological Sciences Journal, 57(6), pp. 1052-1066, [DOI: 10.1080/02626667.2012.695872].
  11. Maraun, D., Wetterhall, F., Ireson, A., Chandler, R., Kendon, E., Widmann, M., Brienen, S., Rust, H., Sauter, T., Themesl, M., Venema, V., Chun, K., Goodess, C., Jones, R., Onof, C., Vrac, M., and Thiele-Eich, I. (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, [DOI: 10.1029/2009RG000314].