DOI QR코드

DOI QR Code

An experimental study on the operation mode of rapid flooding protection system in tunnel

축소모형실험을 통한 터널 내 급속침수 차폐자동화 시스템 작동형태에 대한 연구

  • Received : 2018.10.05
  • Accepted : 2018.11.14
  • Published : 2018.11.30

Abstract

This study focuses on the verification of a rapid protection automation system using an inflatable structure. The inflatable structure is an automatic rapid protection system against human and material damage when the subsea tunnel is flooded. Especially, it is essential for construction and operation of subsea tunnels. In this study, we have experimentally verified the rapid protection automation system using the inflatable structure designed for this problem. In order to verify this, a model tunnel with a 40: 1 reduction ratio was constructed, and air pressure of 0.1 bar and 0.15 bar was injected to divide the tunnel according to the expansion rate at 10 sec and 20 sec. According to the results of the study, the protection efficiency was better at 0.15 bar than 0.1 bar when the expansion structure was expanded, and the protection efficiency and influent control efficiency were different according to the pneumatic injection time of the inflating structure. As a result of this study, it was found that the higher the internal air pressure of the inflated structure and the faster the inflation of rate, the more effectively the inflated structure was inflated. As a result of this study, it is necessary to further study the wedge type structure which is useful for the storage method of expansion structure, shape and expansion derivative, inhibition of expansion structure during protection and control of inflow water.

본 연구는 팽창구조체를 이용한 급속차폐 자동화 시스템 검증에 중점을 두었다. 팽창구조체는 해저터널의 침수사고 발생시 막대한 인적 및 물적 피해가 발생하는데 이를 대비한 자동 급속차폐시스템이다. 특히 해저터널의 시공 및 운영에 있어 필수적이라고 할 수 있다. 본 연구는 이러한 문제에 대하여 고안된 팽창구조체를 이용한 급속차폐 자동화 시스템을 실험적으로 검증하였다. 이러한 검증을 하기 위해 모형터널을 40:1 축소율을 적용한 실내모형을 제작하여 0.1 bar, 0.15 bar의 공기압을 주입하여 10 sec, 20 sec로 팽창속도에 따라 나누어 4 case로 실험을 진행하여 누수량, 수압 등을 분석하였다. 연구 결과에 의하면 팽창구조체의 팽창 시 0.1 bar 보다 0.15 bar일 때 차폐효율이 좋았으며 팽창구조체의 공기압 주입 시간에 따른 차폐효율 및 유입수 제어효율의 차이도 나타났다. 본 연구 진행 결과 팽창구조체가 완벽하게 팽창한다는 가정조건에서는 팽창구조체의 내부공기압이 높고 팽창속도가 빠를수록 더욱 효과적으로 나타났다. 본 연구 결과로 향후 추가적인 팽창구조체의 보관방법, 형상과 팽창유도체 및 차폐시 팽창구조체의 이동억제와 유입수 제어에 도움이 되는 쐐기형 구조물에 대한 추가적인 연구가 필요하다.

Keywords

TNTNB3_2018_v20n6_1147_f0001.png 이미지

Fig. 1. Schematic of inflatable structure in tunnel (Yoo, 2016)

TNTNB3_2018_v20n6_1147_f0002.png 이미지

Fig. 2. Stresses in inflatable structure (Yoo, 2016)

TNTNB3_2018_v20n6_1147_f0003.png 이미지

Fig. 3. Design of pressure system for inflatable structure (Yoo, 2016)

TNTNB3_2018_v20n6_1147_f0004.png 이미지

Fig. 4. Model test system

TNTNB3_2018_v20n6_1147_f0005.png 이미지

Fig. 5. Inflater model

TNTNB3_2018_v20n6_1147_f0006.png 이미지

Fig. 6. Before and after model

TNTNB3_2018_v20n6_1147_f0007.png 이미지

Fig. 7. Leakage with time

TNTNB3_2018_v20n6_1147_f0008.png 이미지

Fig. 8. Water pressure with time respect to time

TNTNB3_2018_v20n6_1147_f0009.png 이미지

Fig. 9. Leakage with time

TNTNB3_2018_v20n6_1147_f0010.png 이미지

Fig. 10. Water pressure with time

Table 1. Experimental conditions

TNTNB3_2018_v20n6_1147_t0001.png 이미지

Table 2. Test cases

TNTNB3_2018_v20n6_1147_t0002.png 이미지

Table 3. protection effectiveness according to expansion shape

TNTNB3_2018_v20n6_1147_t0003.png 이미지

References

  1. Barbero, E.J., Sosa, E.M., Martinez, X., Gutierrez, J.M. (2013), "Reliability design methodology for confined high pressure inflatable structures", Engineering Structures, Vol. 51, pp. 1-9. https://doi.org/10.1016/j.engstruct.2013.01.011
  2. Kenyon, P. (2012), "35,000 Gallons of preventioncontaining a tunnel flood with an inflatable stopper", Tunnel Talk.
  3. Kim, Y.I., Cho, S.K. (2003), "Determination of Segment Sealing Material for a Subaqueous Tunnel under the Han River in the Bundang Railway", Proceeding of the Korean Society of Civil Engineers of Conference, Daegu, pp. 5414-5426.
  4. Molina prmbo, J.C. (2008), "Mechanical characterization of fabrics for inflatable stuctures", Master's. Thesis, Dept. of Mechanical and Aerospace Engineering, West Virginia University, pp. 1-132.
  5. Shin, J.H., Kim, K.H., Kim, D.R., Ji, H.S. (2015), "An experimental study on the static behavior of advanced composite materials drainage pipe member for an undersea tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 2, pp. 65-74. https://doi.org/10.9711/KTAJ.2015.17.2.065
  6. Yoo, K.S. (2016), "Design method of large expansion fabric-structure for flood damage mitigation in tunnel", Ph.D. Thesis, Dept. of Civil Engineering, Hoseo University, pp. 25-32.
  7. Yoo, K.S., Lee, J.H., Kim, Y.D., Kim, S.H. (2015), "Model testing of leakage effect due to multi-cell inflater of rapid protection system in subsea tunnel". Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 3, pp. 295-303. https://doi.org/10.9711/KTAJ.2015.17.3.295
  8. Yoo, K.S., Lee, J.H., Kim, Y.D., Kim, S.H. (2016), "Friction behaviour of inflatable structure system to protect rapidly flooding damages in subsea tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 1, pp. 109-117. https://doi.org/10.9711/KTAJ.2016.18.1.109