References
- van Beek J., de Graaf M., Xia M., Jiang X., Vinje J., Beersma M., de Bruin E., van de Vijver D., Holwerda M., van Houten M., Buisman A.M., van Binnendijk R., Osterhaus A.D.M.E., van der Klis F., Vennema H., Koopmans M.P.G.: Comparison of norovirus genogroup i, ii and iv seroprevalence among children in the Netherlands, 1963, 1983 and 2006. J. Gen. Virol. 97, 2255-2264 (2016). https://doi.org/10.1099/jgv.0.000533
- Vinje J.: Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol. 53, 373-381 (2015). https://doi.org/10.1128/JCM.01535-14
- DiCaprio E.: Recent advances in human norovirus detection and cultivation methods. Curr. Opin. Food Sci. 14, 93-97 (2017). https://doi.org/10.1016/j.cofs.2017.02.007
- Ettayebi K., Crawford S.E., Murakami K., Broughman J.R., Karandikar U., Tenge V.R., Neill F.H., Blutt S.E., Zeng X.-L., Qu L., Kou B., Opekun A.R., Burrin D., Graham D.Y., Ramani S., Atmar R.L., Estes M.K.: Replication of human noroviruses in stem cell-derived human enteroids. Science (New York, N.Y.) 353, 1387 (2016). https://doi.org/10.1126/science.aaf5211
- Jones M.K., Watanabe M., Zhu S., Graves C.L., Keyes L.R., Grau K.R., Gonzalez-Hernandez M.B., Iovine N.M., Wobus C.E., Vinj J., Tibbetts S.A., Wallet S.M., Karst S.M.: Enteric bacteria promote human and mouse norovirus infection of B cells. Science (New York, N.Y.) 346, 755 (2014). https://doi.org/10.1126/science.1257147
- Kageyama T., Kojima S., Shinohara M., Uchida K., Fukushi S., Hoshino F.B., Takeda N., Katayama K.: Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol. 41, 1548 (2003). https://doi.org/10.1128/JCM.41.4.1548-1557.2003
- Vinje J., Hamidjaja R.A., Sobsey M.D.: Development and application of a capsid VP1 (region D) based reverse transcription PCR assay for genotyping of genogroup I and II noroviruses. J. Virol. Methods. 116, 109-117 (2004). https://doi.org/10.1016/j.jviromet.2003.11.001
- Teunis P.F.M., Moe C.L., Liu P., Miller S.E., Lindesmith L., Baric R.S., Pendu J.L., Calderon R.L.: Norwalk virus: How infectious is it? J. Med. Virol. 80, 1468-1476 (2008). https://doi.org/10.1002/jmv.21237
- Patel P.K., Araujo-Castillo R.: Norovirus and infection control. Hosp. Med. Clin. 6, 28-37 (2017). https://doi.org/10.1016/j.ehmc.2016.07.003
- Prasad B.V.V., Hardy M.E., Dokland T., Bella J., Rossmann M.G., Estes M.K.: X-ray crystallographic structure of the norwalk virus capsid. Science. 286, 287-290 (1999). https://doi.org/10.1126/science.286.5438.287
- Karst S.M.: Pathogenesis of noroviruses, emerging rna viruses. Viruses. 2, 748 (2010). https://doi.org/10.3390/v2030748
- Li X., Chen H., Kingsley D.H.: The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses. Int. J. Food Microbiol. 167, 138-143 (2013). https://doi.org/10.1016/j.ijfoodmicro.2013.08.020
- Shoemaker G.K., van Duijn E., Crawford S.E., Uetrecht C., Baclayon M., Roos W.H., Wuite G.J.L., Estes M.K., Prasad B.V.V., Heck A.J.R.: Norwalk virus assembly and stability monitored by mass spectrometry. Mol. Cell. Proteomics. 9, 1742-1751 (2010).
- Chomczynski P., Sacchi N.: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159 (1987).
- Xu Q., Liu H., Yuan P., Zhang X., Chen Q., Jiang X., Zhou Y.: Development of a simplified RT-PCR without RNA isolation for rapid detection of RNA viruses in a single small brown planthopper (Laodelphax striatellus Falln). Virol. J. 14, 90 (2017). https://doi.org/10.1186/s12985-017-0732-6
- O'Donnell T.B., Hyde J.L., Mintern J.D., Mackenzie J.M.: Mouse norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation. Virology. 492, 130-139 (2016). https://doi.org/10.1016/j.virol.2016.02.018
- Cuevas J.M., Combe M., Torres-Puente M., Garijo R., Guix S., Buesa J., Rodriguez-Diaz J., Sanjuan R.: Human norovirus hyper-mutation revealed by ultra-deep sequencing. Infect. Genet. Evol. 41, 233-239 (2016). https://doi.org/10.1016/j.meegid.2016.04.017
- Kim H.-Y., Kwak I.-S., Hwang I.-G., Ko G.: Optimization of methods for detecting norovirus on various fruit. J. Virol. Methods. 153, 104-110 (2008). https://doi.org/10.1016/j.jviromet.2008.07.022
- Somura Y., Kimoto K., Oda M., Nagano M., Okutsu Y., Mori K., Akiba T., Sadamasu K.: Detection of norovirus in swab specimens of restrooms and kitchens collected for investigation of suspected food poisoning outbreaks in tokyo. Shokuhin Eiseigaku Zasshi. 58, 201-204 (2017). https://doi.org/10.3358/shokueishi.58.201
- Tian P., Yang D., Shan L., Wang D., Li Q., Gorski L., Lee B.G., Quinones B., Cooley M.B.: Concurrent detection of human norovirus and bacterial pathogens in water samples from an agricultural region in central California coast. Front. Microbiol. 8, 1560 (2017).
- Morillo S.G., Luchs A., Cilli A., do Carmo Sampaio Tavares Timenetsky M.: Rapid detection of norovirus in naturally contaminated food: Foodborne gastroenteritis outbreak on a cruise ship in Brazil, 2010. Food Environ. Virol. 4, 124-129 (2012). https://doi.org/10.1007/s12560-012-9085-x
- Gentry-Shields J., Jaykus L.-A.: Comparison of process control viruses for use in extraction and detection of human norovirus from food matrices. Food Res. Int. 77, 320-325 (2015).
- Jothikumar N., Lowther J.A., Henshilwood K., Lees D.N., Hill V.R., Vinje J.: Rapid and sensitive detection of noroviruses by using taqman-based one-step reverse transcription-PCR assays and application to naturally contaminated shellfish samples. Appl. Environ. Microbiol. 71, 1870-1875 (2005). https://doi.org/10.1128/AEM.71.4.1870-1875.2005
- Tung G., Macinga D., Arbogast J., Jaykus L.A.: Efficacy of commonly used disinfectants for inactivation of human noroviruses and their surrogates. J. Food Prot. 76, 1210-1217 (2013). https://doi.org/10.4315/0362-028X.JFP-12-532
- Ausar S.F., Foubert T.R., Hudson M.H., Vedvick T.S., Middaugh C.R.: Conformational stability and disassembly of norwalk virus-like particles: Effect of pH and temperature. J. Biol. Chem. 281, 19478-19488 (2006). https://doi.org/10.1074/jbc.M603313200
- Lin Y., Fengling L., Lianzhu W., Yuxiu Z., Yanhua J.: Function of VP2 protein in the stability of the secondary structure of virus-like particles of genogroup II norovirus at different pH levels: Function of VP2 protein in the stability of Nov VLPs. J. Microbiol. 52, 970-975 (2014). https://doi.org/10.1007/s12275-014-4323-6
- Cuellar J.L., Meinhoevel F., Hoehne M., Donath E.: Size and mechanical stability of norovirus capsids depend on pH: A nanoindentation study. J. Gen. Virol. 91, 2449-2456 (2010). https://doi.org/10.1099/vir.0.021212-0
- Baclayon M., Shoemaker G.K., Uetrecht C., Crawford S.E., Estes M.K., Prasad B.V.V., Heck A.J.R., Wuite G.J.L., Roos W.H.: Prestress strengthens the shell of norwalk virus nanoparticles. Nano Lett. 11, 4865-4869 (2011). https://doi.org/10.1021/nl202699r