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Abstract: Planetary global localization is necessary for long-range rover missions in which 

communication with command center operator is throttled due to the long distance. There has been 

number of researches that address this problem by exploiting and matching rover surroundings with 

global digital elevation maps (DEM). Using conventional methods for matching, however, is 

challenging due to artifacts in both DEM rendered images, and/or rover 2D images caused by DEM 

low resolution, rover image illumination variations and small terrain features. In this work, we use 

train CNN discriminator to match rover 2D image with DEM rendered images using conditional 

Generative Adversarial Network architecture (cGAN). We then use this discriminator to search an 

uncertainty bound given by visual odometry (VO) error bound to estimate rover optimal location and 

orientation. We demonstrate our network capability to learn to translate rover image into DEM 

simulated image and match them using Devon Island dataset. The experimental results show that our 

proposed approach achieves ~74% mean average precision.
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1. Introduction

Autonomous navigation is a necessity for planetary rover to 

be able to traverse long-range distances. Although there are 

numerous localization techniques developed to assist rover 

autonomous navigation, such as Visual Odometry (VO) and 

wheel odometry, they often suffer from growing error due to the 

lack of absolute reference. Filtering algorithms and bundle 

adjustments can effectively reduce the growing error, but they 

cannot totally eliminate it. Thus, for a long-range mission, a 

global localization algorithm is needed in which the location and 

orientation of the rover is estimated with respect to global 

absolute reference such as planetary inertial frame, Universal 

Transverse Mercator (UTM) frame, Topocentric frame, … etc. 

There are many research approaches that address the problem of 

planetary global localization. Multi-frame Odometry-compensated 
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[Fig. 1] Examples of artifacts that pose a challenge in matching 

rover images with DEM rendered images. Top Left and Bottom 

Right: example of rocks in rover image too small to appear in 

DEM. Bottom Left and Top Right: examples of illumination 

variations such as lens flare and shallow dynamic range

Global Alignment (MOGA) 
[1]

 uses LIDAR data and match it to 

Digital Elevation Map (DEM). LIDAR is often too heavy and 

power demanding to deploy on a rover. 3D stereo reconstruction, 

on the other hand, typically generates reliable point cloud up to 

40m from the rover. With DEM resolution of about 2m per pixel, 

the accuracy global localization by matching 3D features from a 

single frame becomes limited. In order to accurately localize 

rover from a single frame, 2D images based matching is needed, 

since mountains, craters, skylines, and other 2D features are not 

mostly limited by distance. 

Stein et al. 
[2]

 matches skyline in rover 2D image with that 

rendered from DEM to estimate rover global pose. Similarly, 

Visual Position Estimator for Rovers (VIPER) 
[3, 4]

 matches 

skyline in rover 2D image with that rendered from DEM using 

local geometrical shape features such as mountain peaks and 

shapes. Li Wei, et al. 
[5]

 solves the same problem as VIPER. They 

used more robust skyline detection by major line detection 
[6]

 

method. Strong skyline was used with a more robust Bayesian 

Network for matching. Both approaches, however, suffers from 

low DEM resolution as well as artifacts in both DEM rendered 

images, and/or rover 2D images due to illumination variations 

and small terrain features as shown in [fig. 1]. Yicong Tian, et al. 
[7]

 shows that deep CNN outperforms traditional approaches in 

matching local and global images under variations. They use 

Faster R-CNN to match buildings in street-level image and 

geo-tagged tilted aerial photos for the purpose of geo- 

localization in urban environment. Similarly, Lin et al. 
[8]

 use 

CNN pretrained on ImageNet 
[11]

 and Places 
[12]

 to match google 

street view with geo-tagged tilted aerial photos. Workman et al. 
[9]

, on the other hand, use CNN pretrained on Places 
[12]

 to match 

street-level image with ortho-maps for estimating optimal 

geo-location.

In this paper, we propose a novel Planetary Long-Range Deep 

2D Global Localization Using Generative Adversarial Network. 

Our objective is to search a given space defined by the error 

bound of VO to find rover location. We divide the 6DOF space 

into 6D grid cells, each with specific pose for rover camera. For 

each cell, we simulate a virtual camera with a cell’s pose and 

render virtual 2D image. While simulated image does not reflect 

local features that are too small to be seen by DEM, the general 

underlying terrain and skyline are mostly preserved. We match 

this simulated image from the cell with true image captured by 

rover camera. In this case, we use initial matching by extracted 

2D major lines 
[6]

 in both images. We also obtain matching score 

for each cell and choose the optimal cell as rover 6D Pose.

2. Long-Range Deep 2D Global 

Localization Network

Uncertainties in captured rover images due to local 

geometrical shapes that are too small to appear in DEM, and 

illumination variations may lead to difficulties in matching 

images using conventional approaches. To overcome this 

challenge, we propose Long-Range Deep 2D Global Localization. 

We use conditional generative adversarial network (cGAN) to 

generate “fake” DEM-simulated image corresponding to a 

captured rover image. We then use this “fake” pair against “true” 

pair of rover image and “true” DEM-simulated images to train a 

CNN discriminator to distinguish between the fake and true 

pairs, effectively matching the true correspondences.

2.1 Generator

Similar to image-to-image translation 
[10]

, Generator (G) of 

cGAN uses “U-Net” to generate new images, this is a 15-layers 

encoder-decoder with skip connections between mirrored layers 

in the e0ncoder and decoder stacks. Input image is scaled to 

256x256x3 and output image is 256x256. Each convolutional 

layer of the encoder uses stride of 2 to cut the spatial resolution 

by half. The resolution and number of filters per layer are as 

follows: {128/64, 64/128, 32/256, 16/512, 8/512, 4/512, 2/512, 

1/512}. The decoder is a mirrored structure of the encoder with 

concatenated input of skip connections from each corresponding 

layer. We used leaky ReLu activation for all the layers and batch 
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[Fig. 2] Architecture of Long-Range Deep 2D Global Localization

network. Top: Training phase. Bottom: Classification phase

[Fig. 3] Loss function (inverse of log likelihood function) 

evolution with training iterations. Left: Discriminator loss 

function. Right: Generator loss function

normalization for all but the first layer. The structure of the 

generator is shown in [fig. 2].

2.2 Discriminator

Discriminator (D) uses a 7-layers CNN to discriminate real 

and fake images’ pairs. Input pair are concatenated and each 

layer cuts the resolution by half. The resolution and number of 

filters per layer are as follows: {128/64, 64/128, 32/256, 16/512, 

8/512, 4/512, 1/1}. Finally, a unit sigmoid is used to estimate 

matching probability between the paired input images. Similar to 

the generator, we used leaky ReLu activation for all the layers 

and batch normalization for all but the first layer. The structure of 

the generator is shown in [fig. 2].

2.3 Training Procedure

Let’s assume we have a dataset of pair samples: 

 where A and B are rover and DEM 

simulated images respectively. For every mini-batch of paired 

samples, we use back propagation to minimize generator’s, and 

maximize discriminator’s log likelihood functions:

Where ,  are log likelihood functions of 

generator and discriminator respectively,  is generated 

“fake” DEM image by generator, and  is discriminator 

output probability of matching x to y.

3. Experimental Results

We used Devon Island dataset 
[13]

 bundle 1 which includes 

2056 images with ground truth location. For each image, we used 

OpenGL based renderer to generate DEM-simulated image at 

ground truth location. We divided the set into 80%/20% training 

and testing samples. We trained cGAN for 80 epochs on the 

training samples. 

The evolution of the log likelihood function can be seen in 

[fig. 3] and the examples of generator output can be seen in 

[fig. 4].

We then assumed a VO error bound of 100m around each 

ground truth location. We divided the error bound into 

100x100x180 Tx, Ty, Rz grid cells. For each cell, we rendered 

DEM-simulated images. We used discriminator to evaluate each 

cell and the best match is selected as optimal estimated global 

location of the rover. [Table 1] shows the accuracy of proposed 

algorithm as well as L1-loss between estimated location and 

ground truth.
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[Fig. 4] Examples of input rover images (left), generator’s 

“fake” DEM simulated images (middle), and actual “true” DEM 

simulated images (right)

[Table 1] Performance of proposed algorithm on bundle 1 of 

Devon Island Dataset

Training Data Testing Data

Localization Accuracy 95.41% 73.92%

Mean L1-loss 8.89 35.23

4. Conclusion

In this paper, we proposed a novel algorithm for global 

localization of a planetary rover. We used cGAN to train a CNN 

discriminator to extract deep representations of rover 2D image 

and DEM rendered images; and use them for estimating a 

matching probability. To overcome challenging artifacts of rover 

image and/or DEM rendered images, we used a generator to 

generate “false” DEM simulated images and help train 

discriminator further. This approach elevates the requirement for 

massive training dataset which may not be attainable for 

interplanetary environments. We divide pose searching space 

defined by VO error bound into a grid and query rover optimal 

pose by evaluating the discriminator at each cell using rover 

image and DEM rendered image at this cell perspective. 

Experimental results demonstrate the training performance, 

generated samples, and accuracy of our proposed approach.
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