DOI QR코드

DOI QR Code

TRANSLATION THEOREMS FOR THE ANALYTIC FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PATHS ON WIENER SPACE

  • 투고 : 2017.02.01
  • 심사 : 2017.07.24
  • 발행 : 2018.01.01

초록

In this article, we establish translation theorems for the analytic Fourier-Feynman transform of functionals in non-stationary Gaussian processes on Wiener space. We then proceed to show that these general translation theorems can be applied to two well-known classes of functionals; namely, the Banach algebra S introduced by Cameron and Storvick, and the space ${\mathcal{B}}^{(P)}_{\mathcal{A}}$ consisting of functionals of the form $F(x)=f({\langle}{\alpha}_1,x{\rangle},{\ldots},{\langle}{\alpha}_n,x{\rangle})$, where ${\langle}{\alpha},x{\rangle}$ denotes the Paley-Wiener-Zygmund stochastic integral ${\int_{0}^{T}}{\alpha}(t)dx(t)$.

키워드

참고문헌

  1. M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Ph.D. Thesis, University of Minnesota, Minneapolis, 1972.
  2. R. H. Cameron and R. E. Graves, Additive functionals on a space of continuous functions. I, Trans. Amer. Math. Soc. 70 (1951), 160-176. https://doi.org/10.1090/S0002-9947-1951-0040590-8
  3. R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. (2) 45 (1944), 386-396. https://doi.org/10.2307/1969276
  4. R. H. Cameron and D. A. Storvick, A translation theorem for analytic Feynman integrals, Trans. Math. Amer. Soc. 125 (1966), 1-6. https://doi.org/10.1090/S0002-9947-1966-0200987-0
  5. R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), no. 1, 1-30. https://doi.org/10.1307/mmj/1029001617
  6. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Analytic functions, Kozubnik 1979 (Proc. Seventh Conf., Kozubnik, 1979), pp. 18-67, Lecture Notes in Math., 798, Springer, Berlin-New York, 1980.
  7. R. H. Cameron and D. A. Storvick, A new translation theorem for the analytic Feynman integral, Rev. Roumaine Math. Pures Appl. 27 (1982), no. 9, 937-944.
  8. K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Relationships involving generalized Fourier-Feynman transform, convolution and first variation, Integral Transforms Spec. Funct. 16 (2005), no. 5-6, 391-405. https://doi.org/10.1080/10652460412331320359
  9. S. J. Chang and J. G. Choi, Analytic Fourier-Feynman transforms and convolution products associated with Gaussian processes on Wiener space, to appear in Banach Journal of Mathematical Analysis.
  10. S. J. Chang and J. G. Choi, Rotation of Gaussian paths on Wiener space with application to generalized Fourier-Feynman transform, submitted for publication.
  11. J. G. Choi, D. Skoug, and S. J. Chang, A multiple generalized Fourier-Feynman transform via a rotation on Wiener space, Internat. J. Math. 23 (2012), no. 7, Article ID: 1250068, 20 pages.
  12. D. M. Chung, Scale-invariant measurability in abstract Wiener spaces, Pacific J. Math. 130 (1987), no. 1, 27-40. https://doi.org/10.2140/pjm.1987.130.27
  13. D. M. Chung and S. J. Kang, Translation theorems for Feynman integrals on abstract Wiener and Hilbert spaces, Bull. Korean Math. Soc. 23 (1986), no. 2, 177-187.
  14. D. M. Chung, C. Park, and D. Skoug, Generalized Feynman integrals via conditional Feynman integrals, Michigan Math. J. 40 (1993), no. 2, 377-391. https://doi.org/10.1307/mmj/1029004758
  15. T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), no. 2, 661-673. https://doi.org/10.1090/S0002-9947-1995-1242088-7
  16. T. Huffman, C. Park, and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), no. 2, 247-261. https://doi.org/10.1307/mmj/1029005461
  17. T. Huffman, C. Park, and D. Skoug, Convolution and Fourier-Feynman transforms, Rocky Mountain J. Math. 27 (1997), no. 3, 827-841. https://doi.org/10.1216/rmjm/1181071896
  18. T. Huffman, C. Park, and D. Skoug, Generalized transforms and convolutions, Int. J. Math. Math. Sci. 20 (1997), no. 1, 19-32. https://doi.org/10.1155/S0161171297000045
  19. G. W. Johnson and D. L. Skoug, An Lp analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), no. 1, 103-127. https://doi.org/10.1307/mmj/1029002166
  20. G. W. Johnson and D. L. Skoug, Notes on the Feynman integral. II, J. Funct. Anal. 41 (1981), no. 3, 277-289. https://doi.org/10.1016/0022-1236(81)90075-6
  21. R. E. A. C. Paley, N. Wiener, and A. Zygmund, Notes on random functions, Math. Z. 37 (1933), no. 1, 647-668. https://doi.org/10.1007/BF01474606
  22. C. Park and D. Skoug, A note on Paley-Wiener-Zygmund stochastic integrals, Proc. Amer. Math. Soc. 103 (1988), no. 2, 591-601. https://doi.org/10.1090/S0002-9939-1988-0943089-8
  23. C. Park and D. Skoug, A Kac-Feynman integral equation for conditional Wiener integrals, J. Integral Equations Appl. 3 (1991), no. 3, 411-427. https://doi.org/10.1216/jiea/1181075633
  24. C. Park and D. Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), no. 1, 61-76.
  25. J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.