DOI QR코드

DOI QR Code

CARTIER OPERATORS ON COMPACT DISCRETE VALUATION RINGS AND APPLICATIONS

  • 투고 : 2017.01.11
  • 심사 : 2017.04.18
  • 발행 : 2018.01.01

초록

From an analytical perspective, we introduce a sequence of Cartier operators that act on the field of formal Laurent series in one variable with coefficients in a field of positive characteristic p. In this work, we discover the binomial inversion formula between Hasse derivatives and Cartier operators, implying that Cartier operators can play a prominent role in various objects of study in function field arithmetic, as a suitable substitute for higher derivatives. For an applicable object, the Wronskian criteria associated with Cartier operators are introduced. These results stem from a careful study of two types of Cartier operators on the power series ring ${\mathbf{F}}_q$[[T]] in one variable T over a finite field ${\mathbf{F}}_q$ of q elements. Accordingly, we show that two sequences of Cartier operators are an orthonormal basis of the space of continuous ${\mathbf{F}}_q$-linear functions on ${\mathbf{F}}_q$[[T]]. According to the digit principle, every continuous function on ${\mathbf{F}}_q$[[T]] is uniquely written in terms of a q-adic extension of Cartier operators, with a closed-form of expansion coefficients for each of the two cases. Moreover, the p-adic analogues of Cartier operators are discussed as orthonormal bases for the space of continuous functions on ${\mathbf{Z}}_p$.

키워드

과제정보

연구 과제 주관 기관 : Inha University

참고문헌

  1. J. Allouche and J. Shallit, Automatic sequences, Theory, applications, generalizations, Cambridge University Press, Cambridge, 2003.
  2. B. Angles and F. Pellarin, Universal Gauss-Thakur sums and L-series, Invent. Math. 200 (2015), no. 2, 653-669. https://doi.org/10.1007/s00222-014-0546-8
  3. V. Bosser and F. Pellarin, Hyperdifferential properties of Drinfeld quasi-modular forms, Int. Math. Res. Not. IMRN 2008 (2008), no. 11, Art. ID rnn032, 56 pp.
  4. A. Bostan and P. Dumas, Wronkians and linear independence, Amer. Math. Monthly 117 (2010), no. 8, 722-727. https://doi.org/10.4169/000298910x515785
  5. L. Carlitz, A set of polynomials, Duke Math. J. 6 (1940), 486-504. https://doi.org/10.1215/S0012-7094-40-00639-1
  6. P. Cartier, Une nouvelle operation sur les formes differentielles C. R. Acad. Sci. Paris 244 (1957), 426-428.
  7. P. Cartier, Questions de rationalite des diviseurs en geometrie algebrique, Bull. Soc. Math. France 86 (1958), 177-251.
  8. G. Christol, Ensembles presque periodiques k-reconnaissables, Theoret. Comput. Sci. 9 (1979), no. 1, 141-145. https://doi.org/10.1016/0304-3975(79)90011-2
  9. K. Conrad, A q-Analogue of Mahler Expansions I, Adv. Math. 153 (2000), no. 2, 185-230. https://doi.org/10.1006/aima.1999.1890
  10. K. Conrad, The digit principle, J. Number Theory 84 (2000), no. 2, 230-257. https://doi.org/10.1006/jnth.2000.2507
  11. A. Garcia and J. F. Voloch, Wronskians and linear independence in fields of prime characteristic, Manuscripta Math. 59 (1987), no. 4, 457-469. https://doi.org/10.1007/BF01170848
  12. D. Goss, Fourier series, Measures and Divided Power Series in the theory of Function Fields, K-theory 1 (1989), no. 4, 533-555.
  13. L. Hasse and F. K. Schmidt, Noch eine Begrundung der Theorie der hoheren Diffenentialquotienten in einem algrbraischen Funktionenkorper einer Unbestimmten, J. Reine Angew. Math. 177 (1937), 215-237.
  14. J. Jang, S. Jeong, and C. Li, Criteria of measure-preservation for 1-Lipschitz functions on $F_q[[T]]$ in terms of the van der Put basis and its applications, Finite Fields Appl. 37 (2016), 131-157. https://doi.org/10.1016/j.ffa.2015.09.007
  15. S. Jeong, A comparison of the Carlitz and digit derivatives bases in function field arithmetic, J. Number Theory 84 (2000), no. 2, 258-275. https://doi.org/10.1006/jnth.2000.2527
  16. S. Jeong, Continuous Linear Endomorphisms and Difference Equations over the Completion of $F_q[T]$, J. Number Theory 84 (2000), no. 2, 276-291. https://doi.org/10.1006/jnth.2000.2532
  17. S. Jeong, Hyperdifferential operators and continuous functions on function fields, J. Number Theory 89 (2001), no. 1, 165-178. https://doi.org/10.1006/jnth.2000.2629
  18. S. Jeong, Digit derivatives and application to zeta measures, Acta Arith. 112 (2004), no. 3, 229-245. https://doi.org/10.4064/aa112-3-2
  19. S. Jeong, Calculus in positive characteristic p, J. Number Theory 131 (2011), no. 6, 1089-1104. https://doi.org/10.1016/j.jnt.2010.12.006
  20. S. Jeong, Shift operators and two applications to $F_q[[T]]$, J. Number Theory 133 (2013), no. 9, 2874-2891. https://doi.org/10.1016/j.jnt.2013.02.006
  21. S. Jeong, Characterization of ergodicity of T -adic maps on $F_2[[T]]$ using digit derivatives basis, J. Number Theory 133 (2013), no. 6, 1846-1863. https://doi.org/10.1016/j.jnt.2012.11.009
  22. E. Lucas, Sur les congruences des nombres euleriens et des coefficients differentiels des fonctions trigonometriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54.
  23. M. A. Papanikolas, Log-algebraicity on tensor powers of the Carlitz module and special values of Goss L-functions, preprint.
  24. A. M. Robert, A course in p-adic analysis, Vol. 198 GTM, Springer-Verlag, New York, 2000.
  25. F. K. Schmidt, Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkorpern, Math. Z. 45 (1939), no. 1, 62-74. https://doi.org/10.1007/BF01580273
  26. J. P. Serre, Endomorphismes completement continus des espaces de Banach p-adiques, Inst. Hautes Etudes Sci. Publ. Math. 12 (1962), 69-85. https://doi.org/10.1007/BF02684276
  27. H. Sharif and C. Woodcock, Algebraic functions over a field of positive characteristic and Hadamard products, J. London Math. Soc. (2) 37 (1988), no. 3, 395-403.
  28. B. Snyder, Hyperdifferential Operators on Function Fields and Their Applications, The Ohio State University (Columbus), Ph. D. Thesis, 1999.
  29. J. F. Voloch, Differential operators and interpolation series in power series fields, J. Number Theory 71 (1998), no. 1, 106-108. https://doi.org/10.1006/jnth.1998.2241
  30. C. G. Wagner, Interpolation series for continuous functions on ${\pi}$-adic completions of GF(q, x), Arta Arith. 17 (1971), 389-406. https://doi.org/10.4064/aa-17-4-389-406
  31. C. G. Wagner, Linear operators in local fields of prime characteristic, J. Jeine Angew. Math. 251 (1971), 153-160.
  32. Z. Yang, $C^n$-functions over completions of $F_r[T]$ at finite places of $F_r(T)$, J. Number Theory 108 (2004), no. 2, 346-374. https://doi.org/10.1016/j.jnt.2004.05.007