References
-
O. Abdelkader and S. Khidr, Solutions to
${\bar{\partial}}$ -euations on stronly pseudo-convex domains with$L^{p}$ -estimates, Electron. J. Differential Equations 2004 (2004), no. 73, 1-9. -
O. Abdelkader and S. Khidr, Solutions to
${\bar{\partial}}$ -equations on strongly q-convex domains with$L^{p}$ -estimates, Int. J. Geom. Methods Mod. Phys. 1 (2004), no. 6, 739-749. https://doi.org/10.1142/S0219887804000368 -
E. Amar, An Andreotti-Grauert theorem with
$L^{r}$ estimates, arXiv: 1203.0759v7, 2014. -
E. Amar and S. Mongodi, On
$L^{r}$ hypoellipticity of solutions with compact support of the Cauchy-Riemann equation, Ann. Mat. Pura Appl. 193 (2014), no. 4, 999-1018. https://doi.org/10.1007/s10231-012-0312-8 - A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem I: Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), no. 2, 325-363.
- A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem II: Vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), no. 4, 747-806.
- A. Andreotti and A. Kas, Duality on complex spaces, Ann. Scoula Norm. Sup. Pisa (3) 27 (1973), no. 2, 187-263.
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2010.
-
J. Brinkschulte, The
${\bar{\partial}}$ -problem with support conditions on some weakly pseudoconvex domains, Ark. Mat. 42 (2004), no. 2, 259-282. https://doi.org/10.1007/BF02385479 -
D. Chakrabarti and M.-C. Shaw,
$L^{2}$ Serre duality on domains in complex manifolds and applications, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3529-3554. https://doi.org/10.1090/S0002-9947-2012-05511-5 - S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Stud. Adv. Math., 19, Amer. Math. Soc. Providence, R.I., 2001.
-
M. Derridj, Le probleme de Cauchy pour
${\bar{\partial}}$ et application, Ann Sci. Ecole Norm. Sup. (4) 17 (1984), no. 3, 439-449. https://doi.org/10.24033/asens.1479 -
M. Derridj, Regularite pour
${\bar{\partial}}$ dans quelques domaines faiblement pseudo-convexes, J. Differential Geom. 13 (1978), no. 4, 559-576. https://doi.org/10.4310/jdg/1214434708 - M. Derridj, Inegalites de Carleman et extension locale des fonctions holomorphes, Ann. Scuola Sup. Pisa Cl. Sci. (4) 9 (1982), no. 4, 645-669.
- G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, Springer-Verlag, New York, 2009.
- G. M. Henkin and J. Leiterer, Andreoutti-Grauert Theory by Integral Formulas, Progress in Math. 74, Birkhauser-Verlag, Boston, 1988.
-
S. Khidr, Solving
${\bar{\partial}}$ with$L^{p}$ -estimates on q-convex intersections in complex manifold, Complex Var. Elliptic Equ. 53 (2008), no. 3, 253-263. https://doi.org/10.1080/17476930701685783 -
M. Landucci, Cauchy Problem for
${\bar{\partial}}$ -operator in strictly pseudoconvex domains, Boll. Un. Mat. Ital. (5) 13A (1976), no. 1, 180-185. -
C. Laurent-Thiebaut, Theorie
$L^{p}$ pour l'equation de Cauchy-Riemann, Ann. Fac. Sci. Toulouse Math. (6) 24 (2015), no. 2, 251-279. https://doi.org/10.5802/afst.1448 -
L. Ma and S. K. Vassiliaduo,
$L^{p}$ -estimates for the Cauchy-Riemann operator on q-convex intersections in${\mathbb{C}}n$ , Manuscr. Math. 103 (2000), no. 4, 413-433. https://doi.org/10.1007/PL00005861 -
C. Menini, Estimations pour la resolution du
${\bar{\partial}}$ sur une intersection d'Ouverts strictement pseudoconvexes, Math. Z. 225 (1997), no. 1, 87-93. https://doi.org/10.1007/PL00004305 -
H. Ricard, Estimations
$C^{k}$ pour l'Operator de Cauchy-Riemann sur des domaines a Coins q-Convexes et q-Concaves, Math. Z. 244 (2003), no. 2, 349-398. https://doi.org/10.1007/s00209-003-0504-4 -
S. Sambou, Resolution du
${\bar{\partial}}$ pour les courants prolongeables, Math. Nachr. 235 (2002), no. 1, 179-190. https://doi.org/10.1002/1522-2616(200202)235:1<179::AID-MANA179>3.0.CO;2-8 -
S. Sambou, Resolution du
${\bar{\partial}}$ pour les courants prolongeables definis dans un anneau, Ann. Fac. Sci. Toulouse Math. (6) 11 (2002), no. 1, 105-129. https://doi.org/10.5802/afst.1020