DOI QR코드

DOI QR Code

Anti-inflammatory effects of Coptidis Rhizoma in chronic cold stress-exposed mice

만성 저온 스트레스 동물모델에서의 황련(黃連)의 항염증 효능 연구

  • Choi, Jin Gyu (Department of Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Huh, Eugene (Department of Medical Science of Meridian, Graduate School, Kyung Hee University) ;
  • Lee, Wonil (Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University) ;
  • Kim, Yun-Kyung (Department of Herbal Medicine, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University) ;
  • Lee, Tae-Hee (Department of Formulae Pharmacology, School of Oriental Medicine, Gachon University) ;
  • Oh, Myung Sook (Department of Life and Nanopharmaceutical Sciences, Graduate school, Kyung Hee University)
  • 최진규 (경희대학교 약학대학 약학과) ;
  • 허유진 (경희대학교 일반대학원 경락의과학과) ;
  • 이원일 (경희대학교 일반대학원 나노의약생명과학과) ;
  • 김윤경 (원광대학교 약학대학 한약학과) ;
  • 이태희 (가천대학교 한의과대학 방제학교실) ;
  • 오명숙 (경희대학교 일반대학원 나노의약생명과학과)
  • Received : 2018.08.08
  • Accepted : 2018.11.25
  • Published : 2018.11.30

Abstract

Objectives : The aim of this study was to investigate whether the extract of Coptidis Rhizoma inhibits inflammation in chronic cold stress (CCS)-exposed mice or not. Methods : Coptidis Rhizoma extract (CRE) was made by reflux with distilled water. Male ICR mice (7 weeks old) were divided randomly into 5 groups: (1) control, (2) CCS, (3) CCS+CRE 100 mg/kg, (4) CCS+CRE 300 mg/kg, (5) CCS+CRE 1,000 mg/kg groups. Mice were orally administered once a day for 14 days starting from 1 day before CCS. Group (2)-(5) were exposed to CCS conditions that maintained at $4^{\circ}C$ for 2 h once a day for 14 days. The levels of serum cortisol and hypothalamic prostaglandin E1 (PGE1) and PGE2 were measured by enzyme-linked immunosorbent assay kit. The expression levels of several pro-inflammatory factors like heat shock protein 70 (HSP70), c-fos, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) were measured by western blot analysis in mouse hypothalamus. Results : Oral administration of CRE 1,000 mg/kg significantly suppressed the increase of serum cortisol levels in mice exposed to CCS. CCS-exposed mice had significantly increased the expression of HSP70, c-fos, and NF-kB in hypothalamus, while CRE treatment significantly attenuated the elevation of these pro-inflammatory factors. The ratio of PGE2/PGE1 was also higher in CCS-exposed mice than control group. CRE treatment significantly reduced the increase of PGE2/PGE1 ratio induced by CCS. Conclusion : These findings suggest that Coptidis Rhizoma may work as a potential agent to modulate inflammatory responses under the condition of cold adaptation formed by CCS.

Keywords

DHBCBU_2018_v33n6_35_f0001.tif 이미지

Fig 1. Effects of CRE on cortisol level in mouse serum after CCS.

DHBCBU_2018_v33n6_35_f0002.tif 이미지

Fig 2. Effects of CRE on the expressions of HSP70, c-fos, and NF-kB in mouse hypothalamus after CCS.

DHBCBU_2018_v33n6_35_f0003.tif 이미지

Fig 3. Effects of CRE on the ratio of PGE2/PGE1 levels in mouse hypothalamus after CCS.

References

  1. Makino T, Kato K, Mizukami H. Processed aconite root prevents cold-stress-induced hypothermia and immuno-suppression in mice. Biol Pharm Bull. 2009 ; 32 : 1741-8. https://doi.org/10.1248/bpb.32.1741
  2. Wang X, Che H, Zhang W, Wang J, Ke T, Cao R, Meng S, Li D, Weiming O, Chen J, Luo W. Effects of Mild Chronic Intermittent Cold Exposure on Rat Organs. Int J Biol Sci. 2015 ; 11 : 1171-80. https://doi.org/10.7150/ijbs.12161
  3. Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, Kozak LP. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J Biol Chem. 2006 ; 281 : 31894-908. https://doi.org/10.1074/jbc.M606114200
  4. Westfall TC, Yang CL, Chen X, Naes L, Vickery L, Macarthur H, Han S. A novel mechanism prevents the development of hypertension during chronic cold stress. Auton Autacoid Pharmacol. 2005 ; 25 : 171-7. https://doi.org/10.1111/j.1474-8673.2005.00349.x
  5. Nishikawa H, Hata T, Itoh E, Funakami Y. A role for corticotropin-releasing factor in repeated cold stress-induced anxiety-like behavior during forced swimming and elevated plus-maze tests in mice. Biol Pharm Bull. 2004 ; 27 : 352-6. https://doi.org/10.1248/bpb.27.352
  6. Ma S, Morilak DA. Chronic intermittent cold stress sensitises the hypothalamic-pituitary-adrenal response to a novel acute stress by enhancing noradrenergic influence in the rat paraventricular nucleus. J Neuroendocrinol. 2005 ; 17 : 761-9. https://doi.org/10.1111/j.1365-2826.2005.01372.x
  7. Girotti M, Donegan JJ, Morilak DA. Chronic intermittent cold stress sensitizes neuro-immune reactivity in the rat brain. Psychoneuroendocrinology. 2011 ; 36 : 1164-74. https://doi.org/10.1016/j.psyneuen.2011.02.008
  8. Kim HG, Lee JS, Han JM, Lee JS, Choi MK, Son SW, Kim YK, Son CG. Myelophil attenuates brain oxidative damage by modulating the hypothalamus-pituitary-adrenal (HPA) axis in a chronic cold-stress mouse model. J Ethnopharmacol. 2013 ; 148 : 505-14. https://doi.org/10.1016/j.jep.2013.04.046
  9. Jeon BH. A Bibliographic Study on the Pathological Concept of Han(Cold : 寒) - Concentration Upon the Nai Kyung -. J Physiol & Pathol Korean Med. 1988 ; 3 : 107-22.
  10. Zhang J. Lei Jing. Ren Min Wei Sheng Chu Ban She. 1965.
  11. Zhang Z. Shang-Han Lun. Hanmi medical publishing co. 2011.
  12. Seo BI, Kwon DY, Choi HY, Lee JH, Oh MS, Bu YM. Medicinal Herbology. 8th rev. ed. Seoul : YounglimSa. 2012 : 220-4.
  13. Choi YY, Kim MH, Cho IH, Kim JH, Hong J, Lee TH, Yang WM. Inhibitory effect of Coptis chinensis on inflammation in LPS-induced endotoxemia. J Ethnopharmacol. 2013 ; 149 : 506-12. https://doi.org/10.1016/j.jep.2013.07.008
  14. Bose S, Jeon S, Eom T, Song MY, Kim H. Evaluation of the in vitro and in vivo protective effects of unfermented and fermented Rhizoma coptidis formulations against lipopolysaccharide insult. Food Chem. 2012 ; 135 : 452-9. https://doi.org/10.1016/j.foodchem.2012.05.007
  15. Kim JM, Jung HA, Choi JS, Lee NG. Identification of anti-inflammatory target genes of Rhizoma coptidis extract in lipopolysaccharide-stimulated RAW264.7 murine macrophage-like cells. J Ethnopharmacol. 2010 ; 130 : 354-62. https://doi.org/10.1016/j.jep.2010.05.022
  16. Enk R, Ehehalt R, Graham JE, Bierhaus A, Remppis A, Greten HJ. Differential effect of Rhizoma coptidis and its main alkaloid compound berberine on TNF-alpha induced NFkappaB translocation in human keratinocytes. J Ethnopharmacol. 2007 ; 109 : 170-5. https://doi.org/10.1016/j.jep.2006.07.013
  17. Cui H, Cai Y, Wang L, Jia B, Li J, Zhao S, Chu X, Lin J, Zhang X, Bian Y, Zhuang P. Berberine Regulates Treg/Th17 Balance to Treat Ulcerative Colitis Through Modulating the Gut Microbiota in the Colon. Front Pharmacol. 2018 ; 9 : 571. https://doi.org/10.3389/fphar.2018.00571
  18. Lee IA, Hyun YJ, Kim DH. Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF-${\kappa}B$ activation. Eur J Pharmacol. 2010 ; 648 : 162-70. https://doi.org/10.1016/j.ejphar.2010.08.046
  19. Wang Z, Chen Z, Chen T, Yi T, Zheng Z, Fan H, Chen Z. Berberine Attenuates Inflammation Associated with Delayed-Type Hypersensitivity via Suppressing Th1 Response and Inhibiting Apoptosis. Inflammation. 2017 ; 40 : 221-31. https://doi.org/10.1007/s10753-016-0472-6
  20. Fu K, Lv X, Li W, Wang Y, Li H, Tian W, Cao R. Berberine hydrochloride attenuates lipopolysaccharide-induced endometritis in mice by suppressing activation of NF-${\kappa}B$ signal pathway. Int Immunopharmacol. 2015 ; 24 : 128-32. https://doi.org/10.1016/j.intimp.2014.11.002
  21. Lin K, Liu S, Shen Y, Li Q. Berberine attenuates cigarette smoke-induced acute lung inflammation. Inflammation. 2013 ; 36 : 1079-86. https://doi.org/10.1007/s10753-013-9640-0
  22. Feng M, Kong SZ, Wang ZX, He K, Zou ZY, Hu YR, Ma H, Li XG, Ye XL. The protective effect of coptisine on experimental atherosclerosis ApoE-/- mice is mediated by MAPK/NF-${\kappa}B$-dependent pathway. Biomed Pharmacother. 2017 ; 93 : 721-9. https://doi.org/10.1016/j.biopha.2017.07.002
  23. Zhou K, Hu L, Liao W, Yin D, Rui F. Coptisine Prevented IL-${\beta}$-Induced Expression of Inflammatory Mediators in Chondrocytes. Inflammation. 2016 ; 39 : 1558-65. https://doi.org/10.1007/s10753-016-0391-6
  24. Moon M, Huh E, Lee W, Song EJ, Hwang DS, Lee TH, Oh MS. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice. Nutrients. 2017 ; 9(10) : pii: E1057.
  25. Kim W, Lee W, Choi JG, Ju IG, Kim YK, Lee TH, Oh MS. Inhibitory effects of Aconiti Lateralis Radix Preparata on chronic intermittent cold-induced inflammation in the mouse hypothalamus. J Ethnopharmacol. 2018 ; 215 : 27-33. https://doi.org/10.1016/j.jep.2017.12.042
  26. Lee W, Moon M, Kim HG, Lee TH, Oh MS. Heat stress-induced memory impairment is associated with neuroinflammation in mice. J Neuroinflammation. 2015 ; 12 : 102. https://doi.org/10.1186/s12974-015-0324-6
  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 ; 72 : 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  28. Paakkonen T, Leppaluoto J. Cold exposure and hormonal secretion: a review. Int J Circumpolar Health. 2002 ; 61 : 265-76. https://doi.org/10.3402/ijch.v61i3.17474
  29. Silverman MN, Sternberg EM. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci. 2012 ; 1261 : 55-63. https://doi.org/10.1111/j.1749-6632.2012.06633.x
  30. O'Connor TM, O'Halloran DJ, Shanahan F. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM-INT J MED. 2000 ; 93 : 323-33. https://doi.org/10.1093/qjmed/93.6.323
  31. Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab. 2013 ; 24 : 109-19. https://doi.org/10.1016/j.tem.2012.11.005
  32. Zhao FQ, Zhang ZW, Wang C, Zhang B, Yao HD, Li S, Xu SW. The role of heat shock proteins in inflammatory injury induced by cold stress in chicken hearts. Cell Stress Chaperones. 2013 ; 18 : 773-83. https://doi.org/10.1007/s12192-013-0429-8
  33. Simpson CW, Ruwe WD, Myers RD. Prostaglandins and hypothalamic neurotransmitter receptors involved in hyperthermia: a critical evaluation. Neurosci Biobehav Rev. 1994 ; 18 : 1-20. https://doi.org/10.1016/0149-7634(94)90033-7
  34. Fyda DM, Cooper KE, Veale WL. Contribution of brown adipose tissue to central PGE1-evoked hyperthermia in rats. Am J Physiol. 1991 ; 260 : 59-66.
  35. Neulen J, Zahradnik HP, Flecken U, Breckwoldt M. The effect of cortisol on the synthesis of prostaglandins (PGF2 alpha, PGE2) by human endometrial fibroblasts in vitro with and without addition of estradiol-17 beta or progesterone. Prostaglandins. 1989 ; 37 : 587-95. https://doi.org/10.1016/0090-6980(89)90074-9
  36. Narumiya S. Physiology and pathophysiology of prostanoid receptors. Proc Jpn Acad Ser B Phys Biol Sci. 2007 ; 83 : 296-319. https://doi.org/10.2183/pjab.83.296
  37. Chen Y, Hughes-Fulford M. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. Br J Cancer. 2000 ; 82 : 2000-6. https://doi.org/10.1054/bjoc.2000.1143
  38. Yen JH, Kocieda VP, Jing H, Ganea D. Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. J Biol Chem. 2011 ; 286 : 38913-23. https://doi.org/10.1074/jbc.M111.252932
  39. Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, Yao S, Ma Q, Jin L, Yang J, Wang W, Ning G. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun. 2014 ; 5 : 5493. https://doi.org/10.1038/ncomms6493
  40. Quan K, Li S, Wang D, Shi Y, Yang Z, Song J, Tian Y, Liu Y, Fan Z, Zhu W. Berberine Attenuates Macrophages Infiltration in Intracranial Aneurysms Potentially Through FAK/Grp78/UPR Axis. Front Pharmacol. 2018 ; 9 :565. https://doi.org/10.3389/fphar.2018.00565
  41. Chen HB, Luo CD, Liang JL, Zhang ZB, Lin GS, Wu JZ, Li CL, Tan LH, Yang XB, Su ZR, Xie JH, Zeng HF. Anti-inflammatory activity of coptisine free base in mice through inhibition of NF-${\kappa}B$ and MAPK signaling pathways. Eur J Pharmacol. 2017 ; 811 : 222-31. https://doi.org/10.1016/j.ejphar.2017.06.027
  42. Wu J, Zhang H, Hu B, Yang L, Wang P, Wang F, Meng X. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Eur J Pharmacol. 2016 ; 780 : 106-14. https://doi.org/10.1016/j.ejphar.2016.03.037
  43. Zou ZY, Hu YR, Ma H, Wang YZ, He K, Xia S, Wu H, Xue DF, Li XG, Ye XL. Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling pathway in Syrian golden hamsters. Fitoterapia. 2015 ; 105 : 139-46. https://doi.org/10.1016/j.fitote.2015.06.005
  44. Shin NR, Ko JW, Park SH, Cho YK, Oh SR, Ahn KS, Ryu JM, Kim JC, Seo CS, Shin IS. Protective effect of HwangRyunHaeDok-Tang water extract against chronic obstructive pulmonary disease induced by cigarette smoke and lipopolysaccharide in a mouse model. J Ethnopharmacol. 2017 ; 200 : 60-5. https://doi.org/10.1016/j.jep.2017.02.027
  45. Zhang Q, Ma YM, Wang ZT, Wang CH. Differences in pharmacokinetics and anti-inflammatory effects between decoction and maceration of Sanhuang Xiexin Tang in rats and mice. Planta Med. 2013 ; 79 : 1666-73. https://doi.org/10.1055/s-0033-1350959
  46. Jiang JF, Wang YG, Hu J, Lei F, Kheir MM, Wang XP, Chai YS, Yuan ZY, Lu X, Xing DM, Du F, Du LJ. Novel effect of berberine on thermoregulation in mice model induced by hot and cold environmental stimulation. PLoS One. 2013 ; 8 : e54234. https://doi.org/10.1371/journal.pone.0054234
  47. Han SY, Kang HJ, Choi ES, Lee KN, Lee TH, Kime YK. Comparative study of hwangnyeonhaedok-tang and geongangbuja-tang on the plasma hormones level in mice rxposed to cold stress. Herb Formula Sci. 2013 ; 21(2) : 144-57. https://doi.org/10.14374/HFS.2013.21.2.144