참고문헌
- Arikere, A., Kumar, G.S. and Bandyopadhyay, S. (2010), "Optimisation of double wishbone suspension system using multi-objective genetic algorithm", Simulat. Evol. Learn., 445-454.
- Cheng, X. and Lin, Y. (2014), "Multi-objective robust design of the double wishbone suspension system based on particle swarm optimization", Sci. World J., 354857, 1-7.
- Fallah, M.S., Bhat, R. and Xie, W.F. (2009), "New model and simulation of Macpherson suspension system for ride control applications", Vehic. Syst. Dyn., 47(2), 195-220. https://doi.org/10.1080/00423110801956232
- Kaleibar, M.M., Javanshir, I., Asadi, K., Afkar, A. and Paykani, A. (2013), "Optimization of suspension system of off-road vehicle for vehicle performance improvement", J. Centr. South Univ., 20(4), 902-910. https://doi.org/10.1007/s11771-013-1564-1
- Kim, J.W., Hong, M.B. and Choi, Y.J. (2013), "New Jacobian approach to the kinestatic analysis of a planar double-wishbone suspension mechanism", J. Automob. Eng., 227(7), 1085-1096. https://doi.org/10.1177/0954407012464747
- Li, P., Huang, Y., Li, H., Wang, K., Xia, N. and Yang, H. (2018a), "Efficient modelling and optimization for double wishbone suspensions based on a non-adaptive sampling sparse response surface", Eng. Optim., 0305215X.2018.1458846, 1-15.
- Li, Q., Yu, X. and Wu, J. (2018b), "An improved genetic algorithm to optimize spatial locations for double-wishbone type suspension system with time delay", Math. Prob. Eng., 6583908, 1-8.
- Nagarkar, M.P., Patil, G.J.V. and Patil, R.N.Z. (2016), "Optimization of nonlinear quarter car suspension-seat-driver model", J. Adv. Res., 7(6), 991-1007. https://doi.org/10.1016/j.jare.2016.04.003
- Papaioannou, G. and Koulocheris, D. (2018), "An approach for minimizing the number of objective functions in the optimization of vehicle suspension systems", J. Sound Vibr., 435, 149-169. https://doi.org/10.1016/j.jsv.2018.08.009
- Sancibrian, R., Garcia, P., Viadero, F., Fernandez.A. and Juan, A.D. (2010), "Kinematic design of double-wishbone suspension systems using a multi-objective optimization approach", Vehic. Syst. Dyn., 48(7), 793-813. https://doi.org/10.1080/00423110903156574
- Sert, E. and Boyraz, P. (2017), "Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle", Eng. Sci. Technol., 20(3), 997-1012.
- Su, Z., Xu, F., Hua, L., Chen, H., Wu, K. and Zhang, S. (2018), "Design optimization of minivan MacPherson-strut suspension system based on weighting combination method and neighborhood cultivation genetic algorithm", Proceedings of the Institution of Mechanical Engineers, Part D: J. Automob. Eng., 095440701878930, 1-11.
- Tang, C., He, L. and Khajepour, A. (2018), "Design and analysis of an integrated suspension tilting mechanism for narrow urban vehicles", Mech. Mach. Theor., 120, 225-238. https://doi.org/10.1016/j.mechmachtheory.2017.09.025
- Wang, Y., Gao, J. and Chen, E. (2011), "Kinematic analysis and optimum design of double wishbone independent suspension based on Adams' view", Adv. Mater. Res., 314-316, 2091-2095. https://doi.org/10.4028/www.scientific.net/AMR.314-316.2091
- Yang, Y., Huang, H., Wang, Y.J., Liu, X.T. and Zhao, L.H. (2012), "Optimization design of double wishbone independent suspension based on ADAMS", Appl. Mech. Mater., 138-139, 252-256.
- Zhao, P., Yao, G.F., Wang, M., Wang, X. and Li, J. (2012), "A new method to calculate the equivalent stiffness of the suspension system of a vehicle", Struct. Eng. Mech., 44(3), 363-378. https://doi.org/10.12989/sem.2012.44.3.363