References
- Benaroya, H. and Rehak, M. (1988), "Finite element methods in probabilistic structural analysis: A selective review", Appl. Mech. Rev., 41(5), 201-213. https://doi.org/10.1115/1.3151892
- Campolongo, F., Carboni, J. and Saltelli, A, (2007), "An effective screening design for sensitivity analysis of large models", Environ. Modell. Softw., 22, 1509-1518. https://doi.org/10.1016/j.envsoft.2006.10.004
- Crombecq, K. and Dhaene, T. (2006), "Generating sequential space-silling designs using genetic algorithms and Monte Carlo methods", Comput. Indust. Eng., 50, 503-527. https://doi.org/10.1016/j.cie.2005.07.007
- De Lozzo, M. and Marrel, A. (2015), "Estimation of the derivative-based global sensitivity measures using a Gaussian process metamodel", SIAM/ASA J. Uncertain. Quantific., 4, 708-738.
- Didier, J., Faverjon, B. and Sinou, J.J. (2012), "Analyzing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion", J. Vibr. Contr., 18, 587-607. https://doi.org/10.1177/1077546311408470
- Didier, J., Sinou, J.J. and Faverjon, B. (2012), "Study of the nonlinear dynamic response of a rotor system with faults and uncertainties", J. Sound Vibr., 331, 671-703. https://doi.org/10.1016/j.jsv.2011.09.001
- Duchereau, J. and Soize, C. (2003), "Transient dynamic induced by shocks in stochastic structures", Appl. Stat. Probab. Civil ICASP, 9, 1-6.
- Faber, M.H. (2005), "On the treatment of uncertainties and probabilities in engineering decision analysis", J. Offshore Mech. Arct. Eng., 127, 243-248. https://doi.org/10.1115/1.1951776
- Gan, C., Wang, Y., Yang, S. and Cao, Y. (2014), "Nonparametric modeling and vibration analysis of uncertain Jeffcott rotor with disc offset", Int. J. Mech. Sci., 76, 126-134.
- Gobbato, M., Conte, J., Koshmatka, J. and Farra, C. (2012), "A reliability-based framework of fatigue damage prognosis of composite aircraft structures", Probab. Eng. Mech., 29(1), 176-188. https://doi.org/10.1016/j.probengmech.2011.11.004
- Grosso, A., Jamali, A.R.M.J.U. and Locatelli, M. (2009), "Finding maximin Latin hypercube designs by iterated local search heuristics", Eurz. Oper. Res. J., 197(2), 541-547. https://doi.org/10.1016/j.ejor.2008.07.028
- Guo, X., Zhao, X., Zhang, W., Yan, J. and Sun, G. (2015), "Multi-scale robust design and optimization considering load uncertainties", Comput. Meth. Appl. Mech. Eng., 283, 994-1009. https://doi.org/10.1016/j.cma.2014.10.014
- Guo, Y. and Parker, R.G. (2012), "Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model", Mech. Mach. Theor., 51, 32-45. https://doi.org/10.1016/j.mechmachtheory.2011.12.006
- Hickernell, F.J. (1998), "A generalized discrepancy and quadrature error bound", Math. Comput., 67, 299-322. https://doi.org/10.1090/S0025-5718-98-00894-1
- Iooss, B. and Lemaitre, P. (2015), A Review on Global Sensitivity Analysis Methods, Meloni, C. and Dellino, G. Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, Springer.
- Jafari, P. and Jahani, E. (2016), "Reliability sensitivities with fuzzy random uncertainties using genetic algorithm", Struct. Eng. Mech., 60(3), 413-431. https://doi.org/10.12989/SEM.2016.60.3.413
- Jin, R., Chen, W. and Sudjianto, A. (2005), "An efficient algorithm for constructing optimal design of computer experiments", J. Stat. Plan. Infer., 51, 268-287.
- Johnson, M.E., Moore, L.M. and Ylvisaker, D. (1990), "Minimax and Maximin distance design", J. Stat. Plan. Infer., 24, 131-148.
- Jones, A.B. and Poplawski, J. (1966), "A computer study of design parameters on rolling element bearing performance", Proceedings of the Bearings Conference at Dartmouth University.
- Jourdan, A. (2012), "Global sensitivity analysis using complex linear models", 22, 823-831. https://doi.org/10.1007/s11222-011-9239-y
- Krishnaiah, P.R. (1981), Analysis of Variance, Elsevier, New York, U.S.A.
- Kundu, A., DiazDelaO, F.A., Adhikari, S. and Friswell, M.I. (2014), "A hybrid spectral and metamodeling approach for the stochastic finite element analysis of structural dynamic systems", Comput. Meth. Appl. Mech. Eng., 270, 201-219. https://doi.org/10.1016/j.cma.2013.11.013
- Liao, H. (2014), "Global resonance optimization analysis of nonlinear mechanical systems: Application to the uncertainty quantification problems in rotor dynamics", Commun. Nonlin. Sci. Numer. Simulat., 19(9), 3323-3345. https://doi.org/10.1016/j.cnsns.2014.02.026
- Lim, T.C. and Singh, R. (1990), "Vibration transmission through rolling element bearings, part I: Bearing stiffness formulation", J. Sound Vibr., 139, 179-199. https://doi.org/10.1016/0022-460X(90)90882-Z
- Liu, Y., Jeong, H.K. and Collette, M. (2016), "Efficient optimization of reliability-constrained structural design problems including interval uncertainty", Comput. Struct., 277, 1-11.
- McKay, M.D., Conover, W.J. and Beckman, R.J. (1979), "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometr., 21(2), 239-245. https://doi.org/10.1080/00401706.1979.10489755
- Michael, D., Shields, N. and Zhang, J. (2016), "The generalization of Latin hypercube sampling", Reliab. Eng. Syst. Safety, 148, 96-108. https://doi.org/10.1016/j.ress.2015.12.002
- Minh, D.D., Gao, W. and Song, C. (2016), "Stochastic finite element analysis of structures in the presence of multiple imprecise random field parameters", Comput. Meth. Appl. Mech. Eng., 300, 657-688. https://doi.org/10.1016/j.cma.2015.11.032
- Mirzaee, A., Shayanfar, M. and Abbasnia, R. (2015), "A novel sensitivity method to structural damage estimation in bridges with moving mass", Struct. Eng. Mech., 54(6), 1217-1244. https://doi.org/10.12989/SEM.2015.54.6.1217
- Mitchell, T.J. (1974), "Computer construction of d-optimal first-order designs", Technometr., 16, 211-220.
- Morris, M.D. (1991), "Factorial sampling plans for preliminary computational experiments", Technometr., 33, 161-174. https://doi.org/10.1080/00401706.1991.10484804
- Morris, M.D. and Mitchell, T.J. (1995), "Exploratory designs for computer experiments", J. Stat. Plan. Infer., 43, 381-402. https://doi.org/10.1016/0378-3758(94)00035-T
- Muscolino, G., Santoro, R. and Sofi, A. (2016), "Reliability assessment of structural systems with interval uncertainties under spectrum-compatible seismic excitation", Probab. Eng. Mech., 44, 138-149. https://doi.org/10.1016/j.probengmech.2015.11.005
- Olsson, A.M.J. and Sandberg, G.E. (2002), "On Latin hypercube sampling for stochastic finite element analysis", J. Eng. Mech., 128(1), 121-125. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(121)
- Olsson, G., Sandberg, O. and Dahlblom. (2003), "On Latin hypercube sampling for structural reliability analysis structural safety", 25, 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5
- Paolino, D.S., Chiandussi, G. and Belingardi, G. (2013), "Uncertainty in fatigue loading: Consequences on statistical evaluation of reliability in service", Probab. Eng. Mech., 33, 38-46. https://doi.org/10.1016/j.probengmech.2013.02.001
- Park, J. (1994), "Optimal Latin-hypercube designs for computer experiments", J. Stat. Plan. Infer., 39, 95-111. https://doi.org/10.1016/0378-3758(94)90115-5
- Pate-Cornell, M.E. (1996), "Uncertainties in risk analysis: Six levels of treatment", Reliab. Eng. Syst. Safety, 54, 95-111. https://doi.org/10.1016/S0951-8320(96)00067-1
- Petryna, Y.S. and Kratzig, W.B. (2005), "Compliance-based structural damage measure and its sensitivity to uncertainties", Comput. Struct., 83, 1113-1133. https://doi.org/10.1016/j.compstruc.2004.11.020
- Rafal, S., Piotr, T. and Michal, K. (2007), "Efficient sampling techniques for stochastic simulation of structural systems", Comput. Assist. Mech. Eng. Sci., 14, 127-140.
- Rennen, G., Husslage, B., Van Dam, E.R. and Hertog, D. (2010), "Nested maximin Latin hypercube designs", Struct. Multidisc. Optim., 41, 371-395. https://doi.org/10.1007/s00158-009-0432-y
- Ritto, T.G., Lopez, R.H., Sampaio, R. and Souza, J.E. (2011), "Robust optimization of a flexible rotor-bearing system using the Campbell diagram", Eng. Optim., 43, 77-96. https://doi.org/10.1080/03052151003759125
- Saltelli, A., Chan, K. and Scott, E.M. (2000a), Sensitivity Analysis, Wiley Series in Probability and Statistics, Wiley.
- Saltelli, A., Ratto, M., Andres, T., Cariboni, J., Gatelli, D., Tarantola, S., Campolongo, F. and Saisana, M. (2008), Global Sensitivity Analysis, The Primer, John Wiley & Sons, U.S.A.
- Saltelli, A., Tarantola, S. and Campolongo, F. (2000b), "Sensitivity analysis as an ingredient of modeling", Stat. Sci., 15, 379-390.
- Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004), Sensitivity Analysis in Practice, A guide to Assesing Scientific Models, John Wiley & Sons, U.S.A.
- Sepahvand, K. and Marburg, S. (2013), "On construction of uncertain material parameters using generalized polynomial chaos expansion from experimental data", Proc. IUTAMG., 4-17.
- Sinou, J.J. and Jacqueliin, E. (2015), "Influence of polynomial chaos expansion order on an uncertain asymmetric rotor system response", Mech. Syst. Sign. Proc., 50, 718-731.
- Sobol, I.M. (1993), "Sensitivity analysis for non-linear mathematical models", Math. Model. Comput. Exper., 1, 407-414.
- Sobol, I.M. (1993), "Sensitivity analysis for non-linear mathematical models", Math. Model. Comput. Exper., 1, 407-410.
- Soize, C. (2000), "A nonparametric model of random uncertainties for reduced matrix models in structural dynamics", Probab. Eng. Mech., 15, 277-294. https://doi.org/10.1016/S0266-8920(99)00028-4
- Stocki, R., Szolc, T., Tauzowski, P. and Knabel, J. (2012), "Robust design optimization of the vibrating rotor-shaft system subject to selected dynamic constraints", Mech. Syst. Sign. Proc., 29, 34-44. https://doi.org/10.1016/j.ymssp.2011.07.023
- Szolc, T., Tauzowski, P., Stocki, R. and Knabl, J. (2009), "Damage Identification in vibrating rotor-shaft systems by efficient sampling approach", Mech. Syst. Sign. Proc., 23, 1615-1633. https://doi.org/10.1016/j.ymssp.2008.12.007
- Tondel, K., Vik, J.O., Martens, H., Indahl, U.G., Smith, N. and Omholt, S.W. (2013), "Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models", Chemometr. Intellig. Laborat. Syst., 120, 25-41. https://doi.org/10.1016/j.chemolab.2012.10.006
- Vorechovsky, M. and Novak, D. (2009), "Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach", Prob. Eng. Mech., 24, 452-462. https://doi.org/10.1016/j.probengmech.2009.01.004
- Wei, J.J. and Lv, Z.R. (2015), "Structural damage detection including the temperature difference based on response sensitivity analysis", Struct. Eng. Mech., 53(2), 249-260. https://doi.org/10.12989/SEM.2015.53.2.249
- Ye, K.Q., Li, W. and Sudjianto, A. (2000), "Algorithmic construction of optimal symmetric Latin hypercube designs", J. Stat. Plann. Infer., 90, 145-159. https://doi.org/10.1016/S0378-3758(00)00105-1
- Zhao, J. and Wang, C. (2014), "Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices", Comput. Meth. Appl. Mech. Eng., 273, 204-218. https://doi.org/10.1016/j.cma.2014.01.018
Cited by
- Cavitation Analysis in Centrifugal Pumps Based on Vibration Bispectrum and Transfer Learning vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6988949