DOI QR코드

DOI QR Code

Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)

  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Haeri, Hadi (Young Researchers and Elite Club, Bafgh Branch, Islamic Azad University)
  • Received : 2018.04.15
  • Accepted : 2018.10.11
  • Published : 2018.12.10

Abstract

This research presents the effect of anisotropy of the hollow disc mode under Brazilian test using PFC3D. The Brazilian tensile strength test was performed on the hollow disc specimens containing the bedding layers and then these specimens were numerically modeled by using the two dimensional discrete element code (PFC3D) to calibrate this computer code for the simulation of the cracks propagation and cracks coalescence in the anisotropic bedded rocks. The thickness of each layer within the specimens varied as 5 mm, 10 mm and 20 mm and the layers angles were changed as $0^{\circ}$, $25^{\circ}$, $50^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The diameter of internal hole was taken as 15 mm and the loading rate during the testing process kept as 0.016 mm/s. It has been shown that for layers angles below $25^{\circ}$ the tensile cracks produce in between the layers and extend toward the model boundary till interact and break the specimen. The failure process of the specimen may enhance as the layer angle increases so that the Brazilian tensile strength reaches to its minimum value when the bedding layers is between $50^{\circ}$ and $75^{\circ}$ but its value reaches to maximum at a layer angle of $90^{\circ}$. The number of tensile cracks decreases as the layers thickness increases and with increasing the layers angle, less layer mobilize in the failure process.

Keywords

References

  1. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
  2. Al-Harthi, A.A. (1998), "Effect of planar structures on the anisotropy of ranyah sandstone, Saudi Arabia", Eng. Geol., 50, 49-57. https://doi.org/10.1016/S0013-7952(97)00081-1
  3. Amadei, B. (1996), "Importance of anisotropy when estimating and measuring in situ stresses in rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(3), 293-325 . https://doi.org/10.1016/0148-9062(95)00062-3
  4. Amadei, B. "The influence of rock anisotropy on measurement of stresses in- situ", Ph.D. Dissertation.
  5. Amadei, B. and Rogers, J.D. (1983), "Goodman RE. Elastic constants and tensile strength of anisotropic rocks", Proceedings of the 5th International Congress of Rock Mechanics, 89-96.
  6. Barla, G. (1974), "Rock anisotropy: Theory and laboratory testing", Rock Mech., 131-169
  7. Berenbaum, R. and Brodie, I. (1959), "The tensile strength of coal", J. Inst. Fuel., 32(222), 320-326.
  8. Chen, C.S., Pan, E. Amadei, B. (1998), "Determination strength of anisotropic Brazilian tests of deformability and tensile rock using", Int. J. Rock Mech. Min. Sci., 35(1), 43-61. https://doi.org/10.1016/S0148-9062(97)00329-X
  9. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44, 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  10. Cho, N., Martin, C.D. and Sego, D.C. (2008), "Development of a shear zone in brittle rock subjected to direct shear", Int. J. Rock Mech. Min. Sci., 45, 1335-1346. https://doi.org/10.1016/j.ijrmms.2008.01.019
  11. Chou, Y.C. and Chen, C.S. (2008), "Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure", Int. J. Numer. Analy. Meth. Geomech., 32(3), 219-234. https://doi.org/10.1002/nag.619
  12. Debecker, B. and Vervoort, A. (2009), "Experimental observation of fracture patterns in layered slate", Int. J. Fract., 159, 51-62. https://doi.org/10.1007/s10704-009-9382-z
  13. Exadaktylos, G.E. and Kaklis, K.N. (2001), "Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically", Int. J. Rock Mech. Min. Sci., 38(2), 227-243. https://doi.org/10.1016/S1365-1609(00)00072-1
  14. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Sol., 22, 1205-1218.
  15. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  16. Goodman, R.E. (1993), Engineering Geology-Rock in Engineering Construction, John Wiley and Sons, Inc., New York, U.S.A.
  17. Haeri, H. (2015a), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  18. Haeri, H. (2015b), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  19. Haeri, H. (2015c), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16, 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  20. Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106.
  21. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723
  22. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  23. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  24. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  25. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/SEM.2016.60.6.939
  26. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/CAC.2016.17.5.639
  27. Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soild. Sinic., 5, 555-566.
  28. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading,", Proceedings of the ICF13.
  29. Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Sol. Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
  30. Hobbs, D.W. (1963), "The strength and stress-strain characteristics of coal in triaxial compression", J. Geol., 72, 214-223.
  31. Hoek, E. (1964), "Fracture of transversely isotropic rock", J. S. Afr. Inst. Min. Met., 64, 501-518.
  32. Horino, F.G. and Ellickson, M.L. (1970), A Method of Estimating Strength of Rock Containing Plnes of Weakness, Report of Investigation 744, US Bureau of Mines.
  33. Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269. https://doi.org/10.1016/j.soildyn.2017.06.007
  34. Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Minneapolis.
  35. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength mortar", Comput. Mortar, 15(2), 102-111.
  36. Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, 22(1), 93-100. https://doi.org/10.12989/CAC.2018.22.1.093
  37. Kim, H.M., Lee, J.W., Yazdani, M., Tohidi, E., Nejati, H.R. and Park, E.S. (2018), "Coupled viscous fluid flow and joint deformation analysis for grout injection in a rock joint", Rock Mech. Rock Eng., 51(2), 627-638. https://doi.org/10.1007/s00603-017-1339-3
  38. Kwasniewski, M. (1993), Mechanical Behavior of Transversely Isotropic Rocks, In: Hudson JA (ed) Comprehensive Rock Engineering, Pergamon, Oxford, 1, 285-312.
  39. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modeling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  40. Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 14-27.
  41. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  42. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  43. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
  44. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  45. Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Imp. Eng., 79, 95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008
  46. McLamore, R. and Gray, K.E. (1967), "The mechanical behavior of transversely isotropic sedimentary rocks", Trans. Am. Soc. Mech. Eng. Ser. B, 62-76.
  47. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Back calculation of residual tensile strength of regular and high performance fiber reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  48. Mohammad, A. (2016), "Statistical flexural toughness modelling of ultra-high performance mortar using response surface method", Comput. Mortar, 17(4), 33-39.
  49. Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review", Comput. Concrete, 20(2), 155-164. https://doi.org/10.12989/CAC.2017.20.2.155
  50. Nasseri, M.H., Rao, K.S. and Ramamurthy, T. (1997), "Failure mechanism in schistose rocks", Int. J. Rock Mech. Min. Sci., 34(3-4), 219 .
  51. Nasseri, M.H.B., Rao, K.S. and Ramamurthy, T. (2003), "Anisotropic strength and deformational behavior of Himalayan schists", Int. J. Rock Mech. Min. Sci., 40(1), 3-33. https://doi.org/10.1016/S1365-1609(02)00103-X
  52. Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2018), "Effects of $SiO_2$ nanoparticles dispersion on concrete fracture toughness", Constr. Build. Mater., 171, 672-679. https://doi.org/10.1016/j.conbuildmat.2018.03.224
  53. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  54. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Analy. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  55. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4), 167-181.
  56. Pinto, J.L. (1966), "Stresses and strains in anisotropic orthotropic body", Proceedings of the 1st International Congress of Rock Mechanics, Lisbon, Portugal.
  57. Pinto, J.L. (1970), "Deformability of schistous rocks", Proceedings of the 2nd International Congress of Rock Mechanics, 2-30 .
  58. Pinto, J.L. (1979), "Determination of the elastic constants of anisotropic bodies by diametral compression tests", Proceedings of the 4th International Congress of Rock Mechanics, 359-363 .
  59. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  60. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
  61. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
  62. Ramamurthy, T. (1993), Strength, Modulus Responses of Anisotropic Rocks. In: Hudson JA, Editor, Comprehensive rock engineering, Oxford, Pergamon Press, 1, 313-329.
  63. Rodrigues, G. (1966), "Anisotropy of granites: Modulus of elasticity and ultimate strength ellipsoids, joint systems, slope attitudes, and their correlations", Proceedings of the 1st International Congress of Rock Mechanics, Lisbon, Portugal.
  64. Saeidi, O., Rasouli, V., GeranmayehVaneghi, R., Gholami, R. and Torabi, R. (2013), "A modified failure criterion for transversely isotropic rocks", Geosci. Front.
  65. Salamon, M.D.G. (1968), "Elastic moduli of a stratified rock mass", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 5(6), 519-532. https://doi.org/10.1016/0148-9062(68)90039-9
  66. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/CAC.2016.17.4.489
  67. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical Simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  68. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 323-341. https://doi.org/10.12989/cac.2016.17.3.323
  69. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behavior of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  70. Singh, J., Ramamurth, T. and Venkatappa, R.G. (1989), "Strength anisotropies in rocks", Ind. Geotech. J., 19(2), 147-166.
  71. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sand stone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47, 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
  72. Tavallali, A. and Vervoort, A. (2010), "Failure of layered sandstone under Brazilian test conditions: Effect of micro-scale parameters on macro-scale behavior", Rock Mech. Rock Eng., 43, 641-645. https://doi.org/10.1007/s00603-010-0084-7
  73. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates pre-saturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  74. Tien, Y.M. and Kuo, M.C. (2006), "An experimental investigation of the failure mechanism of simulated transversely isotropic rocks", Int. J. Rock Mech. Min. Sci., 43, 1163-1181. https://doi.org/10.1016/j.ijrmms.2006.03.011
  75. Tien, Y.M. and Tsao, PF. (2000), "Preparation and mechanical properties of artificial transversely isotropic rock", Int. J. Rock Mech. Min. Sci., 37(6), 1001-1012 . https://doi.org/10.1016/S1365-1609(00)00024-1
  76. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Proc.-Soc. Behav. Sci., 198, 2280-2289.
  77. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
  78. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  79. Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using numerical Manifold method", Constr. Build. Mater., 72, 72-82. https://doi.org/10.1016/j.conbuildmat.2014.08.082
  80. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 44-57.
  81. Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behavior of rock materials: Phenomena and mechanisms", Int. J. Fract., 189, 1-32. https://doi.org/10.1007/s10704-014-9959-z
  82. Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modeling investigation on fracturing in coal under impact loads", Int. J. Fract., 183(1), 63-80. https://doi.org/10.1007/s10704-013-9876-6

Cited by

  1. Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction vol.74, pp.2, 2018, https://doi.org/10.12989/sem.2020.74.2.283