DOI QR코드

DOI QR Code

Experimental training of shape memory alloy fibres under combined thermomechanical loading

  • Shinde, Digamber (Department of Industrial Design, NIT Rourkela) ;
  • Katariya, Pankaj V (Department of Mechanical Engineering, NIT Rourkela) ;
  • Mehar, Kulmani (Department of Mechanical Engineering, NIT Rourkela) ;
  • Khan, Md. Rajik (Department of Industrial Design, NIT Rourkela) ;
  • Panda, Subrata K (Department of Mechanical Engineering, NIT Rourkela) ;
  • Pandey, Harsh K (Dr. C.V. Raman Institute of Science & Technology)
  • 투고 : 2018.07.25
  • 심사 : 2018.08.26
  • 발행 : 2018.12.10

초록

In this article, experimental training of the commercial available shape memory alloy fibre (SMA) fibre under the combined thermomechanical loading is reported. SMA has the ability to sense a small change in temperature (${\geq}10^{\circ}C$) and activated under the external loading and results in shape change. The thermomechanical characteristics of SMA at different temperature and mechanical loading are obtained through an own lab-scale experimental setup. The analysis is conducted for two types of the medium using the liquid nitrogen (cold cycle) and the hot water (heat cycle). The experimental data indicate that SMA act as a normal wire for Martensite phase and activated behavior i.e., regain the original shape during the Austenite phase only. To improve the confidence of such kind of behavior has been verified by inspecting the composition of the wire. The study reveals interesting conclusion i.e., while SMA deviates from the equiatomic structure or consist of foreign materials (carbon and oxygen) except nickel and titanium may affect the phase transformation temperature which shifted the activation phase temperature. Also, the grain structure distortion of SMA wire has been examined via the scanning electron microscope after the thermomechanical cycle loading and discussed in details.

키워드

참고문헌

  1. Abdelbaki, C., Bakora, A., Houari, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A.A. (2016b), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/SEM.2016.57.4.617
  2. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by $SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  3. Antunes, A.S., Santos, O.S., Naito, L.K.F., Rigo, O.D. and Otubo, J. (2018), "The wire drawing mechanics of near-equiatomic NiTi SMA", Mater. Res., 21(3), e20170944.
  4. Arani, A.G., Kolahchi, R. and Barzoki, A.A.M. (2011), "Effect of material in-homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft", Appl. Math. Modell., 35, 2771-2789. https://doi.org/10.1016/j.apm.2010.11.076
  5. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/CAC.2016.17.5.567
  6. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/SEM.2018.65.4.453
  7. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016a), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Struct. Eng. Mech., 22(1), 91-112.
  8. Barzoki, A.A.M., Arani, A.G., Kolahchi, R. and Mozdianfard, M.R. (2012), "Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core", Appl. Math. Modell., 36, 2983-2995. https://doi.org/10.1016/j.apm.2011.09.093
  9. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 22(4), 889-913.
  10. Beldjelili, Y., Tounsi, A. and Hassan, S. (2016c), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/SSS.2016.18.4.755
  11. Bhagyaraj, J., Ramaiah, K.V., Saikrishna, C.N., Gouthama. and Bhaumik, S.K. (2013), "Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot", J. Alloys Compd., 581, 344-351. https://doi.org/10.1016/j.jallcom.2013.07.046
  12. Bhaumik, S.K., Saikrishna, C.N., Ramaiah, K.V. and Venkataswamy, M.A. (2008), "Understanding the fatigue behaviour of NiTiCu shape memory alloy wire thermal actuators", Key Eng. Mater., 378-379, 301-316. https://doi.org/10.4028/www.scientific.net/KEM.378-379.301
  13. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5) 1053-1063. https://doi.org/10.12989/CAC.2016.18.5.1053
  14. Bouderba, B., Houari, M.S.A., Tounsi, A. and Hassan, S. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/SEM.2016.58.3.397
  15. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Samy Hassan, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/SEM.2016.60.2.313
  16. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  17. Churchill, C.B. and Shaw, J.A. (2008), "Shakedown response of conditioned shape memory alloy wire", Proceedings of the Behavior and Mechanics of Multifunctional and Composite Materials, 6929, 69291F-1-12.
  18. Cuellar, E.L., Pavon, L.L., Mendoza, E.N., Araujo, C.J.D., Castro, W.B.D., Gonzalez, C. and Otubo, J. (2016), "Effect of spun velocities and composition on the microstructure and transformation temperatures of TiNi shape memory ribbons", Mater. Re., 19(5), 1132-1137. https://doi.org/10.1590/1980-5373-MR-2015-0380
  19. Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A. and Wagner, M. (2004), "Structural and functional fatigue of NiTi shape memory alloys", Mater. Sci. Eng. A., 378(1-2), 24-33. https://doi.org/10.1016/j.msea.2003.10.327
  20. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  21. Erbstoeszer, B., Armstrong, B., Taya, M. and Inoue, K. (2000), "Stabilization of the shape memory effect in NiTi: An experimental investigation", Scr. Mater., 42(12), 1145-1150. https://doi.org/10.1016/S1359-6462(00)00350-X
  22. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by $SiO_2$ nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/CAC.2018.21.4.431
  23. Hajmohammad, M.H, Kolahchi, Zarei, M.S. and Maleki, M. (2018a), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004
  24. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018b), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030
  25. Hajmohammad, M.H., Malekia, M. and Kolahchi, R. (2018c), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  26. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotubes reinforced laminated plates/actuator based on sinusoidal-viscopiezoelasticity theories", J. Sandw. Struct. Mater.
  27. Hamidi, A., Houari, M.S.A, Hassan, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/SCS.2015.18.1.235
  28. Humbeeck, J.V. (1991), "Cycling effects, fatigue and degradation of shape memory alloys", J. Phys. Colloq., 1(C4), C4-189-C4-197.
  29. Jiang, X., Hida, M., Takemoto, Y., Sakakibara, A., Yasuda, H. and Mori, H. (1997), "In situ observation of stress-induced martensitic transformation and plastic deformation in TiNi alloy", Mater. Sci. Eng. A., 238(2), 303-308. https://doi.org/10.1016/S0921-5093(97)00422-X
  30. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/SCS.2018.28.1.099
  31. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Hassan, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  32. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  33. Kolahchi, R. and Bidgoli, A.M.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech.-Engl. Ed., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  34. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90, 479-492. https://doi.org/10.1007/s11071-017-3676-x
  35. Kolahchi, R. Keshtegar, B. and Fakhar, M.H. (2017b), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidalvisco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater.
  36. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  37. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  38. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017a), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545, https://doi.org/10.1016/j.ijmecsci.2017.06.039
  39. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017c), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
  40. Koomen, T.J. (2015), "General control framework for shape memory alloy based aatuators-a phase transformation approach", M.Sc. Dissertation, Delft University of Technology, Delft, the Netherlands.
  41. Liu, Y., Xie, Z. and Humbeeck, J.V. (1999), "Cyclic deformation of NiTi shape memory alloys", Mater. Sci. Eng. A., 273-357, 673-678.
  42. Lobo, P.S., Almeida, J. and Guerreiro, L. (2015), "Shape memory alloys behaviour", Rev. Proc. Eng., 114, 776-783. https://doi.org/10.1016/j.proeng.2015.08.025
  43. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  44. Mouffoki, A., Bedia, E.AA., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  45. Nath, T., Chouhan, P., Disawal, R. and Palani, I.A. (2017), "Comparative study of electrically and hot water actuated shape memory alloy using developed thermo-mechanical cycle test bench", Def. Sci. J., 67(1), 101-107.
  46. Perkins, J. and Sponholz, R.O. (1984), "Stress-induced martensitic transformation cycling and two-way shape memory training in Cu-Zn-Al alloys", Metall. Trans. A., 15(2), 313-321. https://doi.org/10.1007/BF02645117
  47. Ramaiah, K.V., Saikrishna, C.N., Dhananjaya, B.R. and Bhaumik, S.K. (2005), "Effects of thermo-mechanical cycling on the functional properties of Ni-Ti-Cu shape memory alloys", Proceedings of the International Conference on Smart Materials, Structures, and Systems.
  48. Saikrishna, C.N., Ramaiah, K.V. and Bhaumik, S.K. (2006), "Effects of thermo-mechanical cycling on the strain response of Ni-Ti-Cu shape memory alloy wire actuator", Mater. Sci. Eng. A., 428(1-2), 217-224. https://doi.org/10.1016/j.msea.2006.05.008
  49. Saikrishna, C.N., Ramaiah, K.V., Prabhu, S.A. and Bhaumik, S.K. (2001), "On stability of NiTi wire during thermo-mechanical cycling", Bull. Mater. Sci., 32(3), 343-352. https://doi.org/10.1007/s12034-009-0049-1
  50. Stachowiak, G.B. and McCormick, P.G. (1988), "Shape memory behaviour associated with the R and martensitic transformations in a NiTi alloy", Acta Metall., 36(2), 291-297. https://doi.org/10.1016/0001-6160(88)90006-5
  51. Stalmans, R., Humbeeck, J.V. and Delaey, L. (1991), "Training and the two-way memory effect in copper-based shape memory alloys", J. Phys. Colloq., 1(C4), C4-403-C4-408.
  52. Stosic, Z., Manasijevic, D., Balanovic, L., Holjevac-Grguric, T., Stamenkovic, U., Premovic, M., Minic, D., Gorgievski, M. and Todorovic, R. (2017), "Effects of composition and thermal treatment of Cu-Al-Zn alloys with low content of Al on their shape-memory properties", Mater. Res., 20(5), 1425-1431. https://doi.org/10.1590/1980-5373-mr-2017-0153
  53. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/SEM.2015.54.4.755
  54. Totounferoush, A., Ovesy, H.R. and Ghannadpour, S.A.M. (2014) "Nonlinear dynamic buckling response analysis of piezocomposite plates subjected to in-plane loads", Proceedings of the 4th International Conference on Acoustics & Vibration (ISAV2014), Tehran, Iran, December.
  55. Uchil, J., Mohanchandra, K.P., Kumara, K.G., Mahesh, K.K. and Murali, T.P. (1999), "Thermal expansion in various phases of Nitinol using TMA", Phys. B, 270(3-4), 289-297. https://doi.org/10.1016/S0921-4526(99)00186-6
  56. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_2$ nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/WAS.2017.24.1.043
  57. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with $SiO_2$ nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009

피인용 문헌

  1. Reliability Analysis of Stiffened Aircraft Panels Using Adjusting Mean Value Method vol.58, pp.12, 2018, https://doi.org/10.2514/1.j059636
  2. A numerical study of a self-centring SMA damper vol.79, pp.5, 2018, https://doi.org/10.12989/sem.2021.79.5.641