DOI QR코드

DOI QR Code

A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model

  • Zhou, Changtai (School of Civil, Environmental and Mining Engineering, The University of Adelaide) ;
  • Xu, Chaoshui (School of Civil, Environmental and Mining Engineering, The University of Adelaide) ;
  • Karakus, Murat (School of Civil, Environmental and Mining Engineering, The University of Adelaide) ;
  • Shen, Jiayi (Institute of Port, Coastal and Offshore Engineering, Zhejiang University)
  • 투고 : 2017.11.28
  • 심사 : 2018.09.13
  • 발행 : 2018.12.10

초록

A flat-jointed bonded-particle model (BPM) has been proved to be an effective tool for simulating mechanical behaviours of intact rocks. However, the tedious and time-consuming calibration procedure imposes restrictions on its widespread application. In this study, a systematic approach is proposed for simplifying the calibration procedure. The initial relationships between the microscopic, constitutive parameters and macro-mechanical rock properties are firstly determined through dimensionless analysis. Then, sensitivity analyses and regression analyses are conducted to quantify the relationships, using results from numerical simulations. Finally, four examples are used to demonstrate the effectiveness and robustness of the proposed systematic approach for the calibration procedure of BPMs.

키워드

과제정보

연구 과제 주관 기관 : China Scholarship Council (CSC)

참고문헌

  1. Alejandro, J. (2013), "Considerations for discrete element modeling of rock cutting", Ph.D. Thesis, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.
  2. Bathurst, R.J. and Rothenburg, L. (1992), "Investigation of micromechanical features of idealized granular assemblies using DEM", Eng. Comput., 9(2), 199-210. https://doi.org/10.1108/eb023859
  3. Chang, C.S. and Misra, A. (1990), "Packing structure and mechanical properties of granulates", J. Eng. Mech., 116(5), 1077-1093. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1077)
  4. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  5. Cundall, P.A. (1971), "A computer model for simulating progressive, large-scale movements in blocky rock systems", Proceedings of the International Symposium on Rock Mechanics, Nancy, France, October.
  6. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  7. Ding, X., Zhang, L., Zhu, H. and Zhang, Q. (2014), "Effect of model scale and particle size distribution on PFC3D simulation results", Rock Mech. Rock Eng., 47(6), 2139-2156. https://doi.org/10.1007/s00603-013-0533-1
  8. Duan, K., Kwok, C.Y. and Tham, L.G. (2015), "Micromechanical analysis of the failure process of brittle rock", Int. J. Numer. Anal. Meth. Geomech., 39(6), 618-634. https://doi.org/10.1002/nag.2329
  9. Fakhimi, A. and Villegas, T. (2007), "Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture", Rock Mech. Rock Eng., 40(2), 193-211. https://doi.org/10.1007/s00603-006-0095-6
  10. He, X. and Xu, C. (2015), "Discrete element modelling of rock cutting: From ductile to brittle transition", Int. J. Numer. Anal. Meth. Geomech., 39(12), 1331-1351. https://doi.org/10.1002/nag.2362
  11. Huang, H. (1999), Discrete Element Modeling of Tool-Rock Interaction, The University of Minnesota, Minneapolis, Minnesota, U.S.A.
  12. Itasca Consulting Group Inc. (2014), PFC2D/3D (Particle Flow Code in 2/3 Dimensions), Version 5.0, Minneapolis, Minnesota, U.S.A.
  13. Koyama, T. and Jing, L. (2007), "Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-A particle mechanics approach", Eng. Anal. Boundary Elements, 31(5), 458-472. https://doi.org/10.1016/j.enganabound.2006.11.009
  14. Ning, J., Liu, X., Tan, Y., Wang, J. and Tian, C. (2015), "Relationship of box counting of fractured rock mass with hoek-brown parameters using particle flow simulation", Geomech. Eng., 9(5), 619-629. https://doi.org/10.12989/gae.2015.9.5.619
  15. Olofsson, I. and Fredriksson, A. (2005), Strategy for a numerical Rock Mechanics Site Descriptive Model. Further Development of the Theoretical/Numerical Approach (No. SKB-R--05-43), Swedish Nuclear Fuel and Waste Management Co.
  16. Peng, S. and Zhang, J. (2007), Engineering Geology for Underground Rocks, Springer Science & Business Media, 1-19.
  17. Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, Chicago, Illinois, U.S.A., June.
  18. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  19. Schopfer, M.P.J., Childs, C. and Walsh, J.J. (2007), "Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 1. Model calibration, boundary conditions, and selected results", J. Geophys. Res., 112 (B10).
  20. Shen, J., Jimenez, R., Karakus, M. and Xu, C. (2014), "A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength", Rock Mech. Rock Eng., 47(2), 357-369. https://doi.org/10.1007/s00603-013-0408-5
  21. Sonin, A.A. (2004), "A generalization of the Pi-theorem and dimensional analysis", Proc. Nat. Acad. Sci. U.S.A., 101(23), 8525-8526. https://doi.org/10.1073/pnas.0402931101
  22. Tian, W.L. and Yang, S.Q. (2017), "Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression", Geomech. Eng., 12(3), 541-560. https://doi.org/10.12989/gae.2017.12.3.541
  23. Vallejos, J.A., Salinas, J.M., Delonca, A. and Mas Ivars, D. (2016), "Calibration and verification of two bonded-particle models for simulation of intact rock behavior", Int. J. Geomech, 17(4), 06016030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000773
  24. Vesga, L.F., Vallejo, L.E. and Lobo-Guerrero, S. (2008), "DEM analysis of the crack propagation in brittle clays under uniaxial compression tests", Int. J. Numer. Anal. Meth. Geomech., 32(11), 1405-1415. https://doi.org/10.1002/nag.665
  25. Wang, Z., Ruiken, A., Jacobs, F. and Ziegler, M. (2014), "A new suggestion for determining 2D porosities in DEM studies", Geomech. Eng., 7(6), 665-678. https://doi.org/10.12989/GAE.2014.7.6.665
  26. Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49(5), 1813-1830. https://doi.org/10.1007/s00603-015-0890-z
  27. Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. https://doi.org/10.12989/GAE.2015.9.6.815
  28. Xue, X. (2015), "Study on relations between porosity and damage in fractured rock mass", Geomech. Eng., 9(1), 15-24. https://doi.org/10.12989/gae.2015.9.1.015
  29. Yang, B., Jiao, Y. and Lei, S. (2006), "A study on the effects of microparameters on macroproperties for specimens created by bonded particles", Eng. Comput., 23(6), 607-631. https://doi.org/10.1108/02644400610680333
  30. Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", Int. J. Rock Mech. Min. Sci., 44(6), 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004
  31. Zhao, W., Huang, R. and Yan, M. (2015), "Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation", Geomech. Eng., 8(6), 757-767. https://doi.org/10.12989/gae.2015.8.6.757
  32. Zhou, L., Chu, X., Zhang, X. and Xu, Y. (2016), "Numerical investigations on breakage behaviour of granular materials under triaxial stresses", Geomech. Eng., 11(5), 639-655. https://doi.org/10.12989/gae.2016.11.5.639

피인용 문헌

  1. A particle mechanics approach for the dynamic strength model of the jointed rock mass considering the joint orientation vol.43, pp.18, 2018, https://doi.org/10.1002/nag.3002
  2. A new damage model accounting the effect of joint orientation for the jointed rock mass vol.13, pp.7, 2018, https://doi.org/10.1007/s12517-020-5274-3