Acknowledgement
Supported by : China Scholarship Council (CSC)
References
- Alejandro, J. (2013), "Considerations for discrete element modeling of rock cutting", Ph.D. Thesis, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.
- Bathurst, R.J. and Rothenburg, L. (1992), "Investigation of micromechanical features of idealized granular assemblies using DEM", Eng. Comput., 9(2), 199-210. https://doi.org/10.1108/eb023859
- Chang, C.S. and Misra, A. (1990), "Packing structure and mechanical properties of granulates", J. Eng. Mech., 116(5), 1077-1093. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1077)
- Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
- Cundall, P.A. (1971), "A computer model for simulating progressive, large-scale movements in blocky rock systems", Proceedings of the International Symposium on Rock Mechanics, Nancy, France, October.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Ding, X., Zhang, L., Zhu, H. and Zhang, Q. (2014), "Effect of model scale and particle size distribution on PFC3D simulation results", Rock Mech. Rock Eng., 47(6), 2139-2156. https://doi.org/10.1007/s00603-013-0533-1
- Duan, K., Kwok, C.Y. and Tham, L.G. (2015), "Micromechanical analysis of the failure process of brittle rock", Int. J. Numer. Anal. Meth. Geomech., 39(6), 618-634. https://doi.org/10.1002/nag.2329
- Fakhimi, A. and Villegas, T. (2007), "Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture", Rock Mech. Rock Eng., 40(2), 193-211. https://doi.org/10.1007/s00603-006-0095-6
- He, X. and Xu, C. (2015), "Discrete element modelling of rock cutting: From ductile to brittle transition", Int. J. Numer. Anal. Meth. Geomech., 39(12), 1331-1351. https://doi.org/10.1002/nag.2362
- Huang, H. (1999), Discrete Element Modeling of Tool-Rock Interaction, The University of Minnesota, Minneapolis, Minnesota, U.S.A.
- Itasca Consulting Group Inc. (2014), PFC2D/3D (Particle Flow Code in 2/3 Dimensions), Version 5.0, Minneapolis, Minnesota, U.S.A.
- Koyama, T. and Jing, L. (2007), "Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-A particle mechanics approach", Eng. Anal. Boundary Elements, 31(5), 458-472. https://doi.org/10.1016/j.enganabound.2006.11.009
- Ning, J., Liu, X., Tan, Y., Wang, J. and Tian, C. (2015), "Relationship of box counting of fractured rock mass with hoek-brown parameters using particle flow simulation", Geomech. Eng., 9(5), 619-629. https://doi.org/10.12989/gae.2015.9.5.619
- Olofsson, I. and Fredriksson, A. (2005), Strategy for a numerical Rock Mechanics Site Descriptive Model. Further Development of the Theoretical/Numerical Approach (No. SKB-R--05-43), Swedish Nuclear Fuel and Waste Management Co.
- Peng, S. and Zhang, J. (2007), Engineering Geology for Underground Rocks, Springer Science & Business Media, 1-19.
- Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, Chicago, Illinois, U.S.A., June.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Schopfer, M.P.J., Childs, C. and Walsh, J.J. (2007), "Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 1. Model calibration, boundary conditions, and selected results", J. Geophys. Res., 112 (B10).
- Shen, J., Jimenez, R., Karakus, M. and Xu, C. (2014), "A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength", Rock Mech. Rock Eng., 47(2), 357-369. https://doi.org/10.1007/s00603-013-0408-5
- Sonin, A.A. (2004), "A generalization of the Pi-theorem and dimensional analysis", Proc. Nat. Acad. Sci. U.S.A., 101(23), 8525-8526. https://doi.org/10.1073/pnas.0402931101
- Tian, W.L. and Yang, S.Q. (2017), "Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression", Geomech. Eng., 12(3), 541-560. https://doi.org/10.12989/gae.2017.12.3.541
- Vallejos, J.A., Salinas, J.M., Delonca, A. and Mas Ivars, D. (2016), "Calibration and verification of two bonded-particle models for simulation of intact rock behavior", Int. J. Geomech, 17(4), 06016030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000773
- Vesga, L.F., Vallejo, L.E. and Lobo-Guerrero, S. (2008), "DEM analysis of the crack propagation in brittle clays under uniaxial compression tests", Int. J. Numer. Anal. Meth. Geomech., 32(11), 1405-1415. https://doi.org/10.1002/nag.665
- Wang, Z., Ruiken, A., Jacobs, F. and Ziegler, M. (2014), "A new suggestion for determining 2D porosities in DEM studies", Geomech. Eng., 7(6), 665-678. https://doi.org/10.12989/GAE.2014.7.6.665
- Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49(5), 1813-1830. https://doi.org/10.1007/s00603-015-0890-z
- Xu, W.J., Li, C.Q. and Zhang, H.Y. (2015), "DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test", Geomech. Eng., 9(6), 815-827. https://doi.org/10.12989/GAE.2015.9.6.815
- Xue, X. (2015), "Study on relations between porosity and damage in fractured rock mass", Geomech. Eng., 9(1), 15-24. https://doi.org/10.12989/gae.2015.9.1.015
- Yang, B., Jiao, Y. and Lei, S. (2006), "A study on the effects of microparameters on macroproperties for specimens created by bonded particles", Eng. Comput., 23(6), 607-631. https://doi.org/10.1108/02644400610680333
- Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", Int. J. Rock Mech. Min. Sci., 44(6), 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004
- Zhao, W., Huang, R. and Yan, M. (2015), "Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation", Geomech. Eng., 8(6), 757-767. https://doi.org/10.12989/gae.2015.8.6.757
- Zhou, L., Chu, X., Zhang, X. and Xu, Y. (2016), "Numerical investigations on breakage behaviour of granular materials under triaxial stresses", Geomech. Eng., 11(5), 639-655. https://doi.org/10.12989/gae.2016.11.5.639
Cited by
- A particle mechanics approach for the dynamic strength model of the jointed rock mass considering the joint orientation vol.43, pp.18, 2018, https://doi.org/10.1002/nag.3002
- A new damage model accounting the effect of joint orientation for the jointed rock mass vol.13, pp.7, 2018, https://doi.org/10.1007/s12517-020-5274-3