과제정보
연구 과제 주관 기관 : Croatian Science Foundation
참고문헌
- Adams, L. (1985), "m-Step preconditioned conjugate gradient methods", SIAM J. Sci. Statis. Comput., 6(2), 452-463. https://doi.org/10.1137/0906032
- Arjmandi, A. and Lotfi, V. (2011), "Dynamic analysis of structures in frequency domain by a new set of ritz vectors", Struct. Eng. Mech., 39(5), 703-716. https://doi.org/10.12989/sem.2011.39.5.703
- Benzi, M. (2002), "Preconditioning techniques for large linear systems: A survey", J. Comput. Phys., 182(2), 418-477. https://doi.org/10.1006/jcph.2002.7176
- Benzi, M., Meyer, C.D. and Tuma, M. (1996), "A sparse approximate inverse preconditioner for the conjugate gradient method", SIAM J. Sci. Comput., 17(5), 1135-1149. https://doi.org/10.1137/S1064827594271421
- Carvalho, G., Bento, R. and Bhatt, C. (2013), "Nonlinear static and dynamic analyses of reinforced concrete buildings-comparison of different modelling approaches", Earthq. Struct., 4(5), 451-470. https://doi.org/10.12989/eas.2013.4.5.451
- Da Cunha, R.D. and Hopkins, T. (1995), "The Parallel Iterative Methods (PIM) package for the solution of systems of linear equations on parallel computers", Appl. Numer. Math., 19(1/2), 33-50. https://doi.org/10.1016/0168-9274(95)00017-O
- Dai, Y.H., Liao, L.Z. and Li, D. (2004), "On restart procedures for the conjugate gradient method", Numer. Algorit., 35, 249-260. https://doi.org/10.1023/B:NUMA.0000021761.10993.6e
- Duff, I.S. and Meurant, G.A. (1989), "The effect of ordering on preconditioned conjugate gradients", BIT Numer. Math., 29(4), 635 - 657. https://doi.org/10.1007/BF01932738
- Dvornik, J. (1979), "Generalization of the CG method applied to linear and nonlinear problems", Comput. Struct., 10 (1/2), 217-223. https://doi.org/10.1016/0045-7949(79)90089-0
- Eftekhari, S.A. (2018), "A coupled ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions", Steel Compos. Struct., 28(6), 655-670. https://doi.org/10.12989/scs.2018.28.6.655
- Ferronato, M. (2012), "Preconditioning for sparse linear systems at the dawn of the 21st century: History, current developments and future perspectives", ISRN Appl. Math., Article ID 127647.
- Ferronato, M., Janna, C. and Gambolati, G. (2015), "A novel factorized sparse approximate inverse preconditioner with supernodes", Proc. Comput. Sci., 51, 266-275. https://doi.org/10.1016/j.procs.2015.05.238
- Guerra, A. and Kiousis, P.D. (2006) "Design optimization of reinforced concrete structures", Comput. Concrete, 3(5), 313-334. https://doi.org/10.12989/cac.2006.3.5.313
- Higham, N.J. (2009), "Cholesky factorization", WIREs Comput. Statis., 1(2), 251-254. https://doi.org/10.1002/wics.18
- Huckle, T.K. (1998), "Efficient computation of sparse approximate inverses", Numer. Lin. Algebr. Appl., 5(1), 57-71. https://doi.org/10.1002/(SICI)1099-1506(199801/02)5:1<57::AID-NLA129>3.0.CO;2-C
- Ibrahimbegovic, A. and Wilson, E.L. (1990a), "Automated truncation of Ritz vector basis in modal transformation", J. Eng. Mech., 116 (11), 2506-2520. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:11(2506)
- Ibrahimbegovic, A. and Wilson, E.L. (1990b), "A methodology for dynamic analysis of linear structure-foundation systems with local non-linearities", Earthq. Eng. Struct. Dyn., 19(8), 1197-1208. https://doi.org/10.1002/eqe.4290190809
- Ibrahimbegovic, A., Chen, H.C., Wilson, E.L. and Taylor, R.L. (1990), "Ritz method for dynamic analysis of large discrete linear systems with non-proportional damping", Earthq. Eng. Struct. Dyn., 19(6), 877-889. https://doi.org/10.1002/eqe.4290190608
- Ibrahimbegovic, A. and Wilson, E.L. (1992), "Efficient solution procedure for systems with local nonlinearities", Eng. Comput., 9(3), 385-398. https://doi.org/10.1108/eb023874
- Iwamura, C., Costa, F.S., Sbarski, I., Easton, A. and Li N. (2003), "An efficient algebraic multigrid preconditioned conjugate gradient solver", Comput. Meth. Appl. Mech. Eng., 192(20/21), 2299-2318. https://doi.org/10.1016/S0045-7825(02)00378-X
- Lazarevic, D. and Dvornik, J. (2017), "Iterated Ritz Method for solving systems of linear algebraic equations", Gradevin., 69 (7), 521-535.
- Markovic, D., Park, K.C. and Ibrahimbegovic, A. (2006), "Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis", Int. J. Numer. Meth. Eng., 70(2), 163-180. https://doi.org/10.1002/nme.1878
- Markovic, D., Ibrahimbegovic, A. and Park, K.C. (2009), "Partitioning based reduced order modelling approach for transient analyses of large structures", Eng. Comput., 26 (1/2), 46-68. https://doi.org/10.1108/02644400910924807
- Nour-Omid, B. and Taylor, R.L. (1984), An Algorithm for Assembly of Stiffness Matrices into a Compacted Data Structure, Report No. UCB/SESM-84/06, Structural Engineering and Structural Mechanics, Department of Civil Engineering, University of California, Berkeley, U.S.A.
- Olshanskii, M.A. and Tyrtyshnikov, E.E. (2014), Iterative Methods for Linear Systems. Theory and Application, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, U.S.A.
- Pereira, F.H., Lopes Verardi, S.L. and Nabeta, S.I. (2006), "A fast algebraic multigrid preconditioned conjugate gradient solver", Appl. Math. Comput., 179(1), 344-351. https://doi.org/10.1016/j.amc.2005.11.115
- Reed, D.A. and Patrick, M.L. (1985), "Parallel, iterative solution of sparse linear systems: Models and architectures", Parall. Comput., 2(1), 45-67. https://doi.org/10.1016/0167-8191(85)90017-1
- Rvachev, V., Sheiko, T. and Shapiro, V. (1999), "Application of the method of R -functions to integration of differential equations with partial derivatives", Cybernet. Syst. Analy., 35(1), 1-18. https://doi.org/10.1007/BF02667909
- Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, U.S.A.
- Shapiro, V. (1988), Theory of R-Functions and Applications: A Primer, CPA Technical Report CPA88-3, Cornell Programmable Automation, Cornell University, Ithaca, New York, U.S.A.
- Stuben, K. (2001), "A review of algebraic multigrid", J. Comput. Appl. Math., 128(1/2), 281-309. https://doi.org/10.1016/S0377-0427(00)00516-1
- Sun, F.J. and Gu, M. (2016), "Preconditioning technique for a simultaneous solution to wind-membrane interaction", Wind Struct., 22 (3), 349-368. https://doi.org/10.12989/WAS.2016.22.3.349
- Taylor, R.L. (2014), FEAP-A Finite Element Analysis Program, Version 8.4, Programmer Manual, Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, U.S.A.
- The GFORTRAN Team (2016), Using GNU Fortran, For GCC version 7.0.0 (pre - release), (GCC), Free Software Foundation, Boston, U.S.A.
- Van der Vorst, H.A. and Dekker, K. (1988), "Conjugate gradient type methods and preconditioning", J. Comput. Appl. Math., 24(1/2), 73-87. https://doi.org/10.1016/0377-0427(88)90344-5
- Van't Wout, E., Van Gijzen, M.B., Ditzel, A., Van der Ploeg, A. and Vuik, C. (2010), "The deflated relaxed incomplete Cholesky CG method for use in a real-time ship simulator", Proc. Comput. Sci., 1(1), 249-257. https://doi.org/10.1016/j.procs.2010.04.028
- Wathen, A.J. (2015), "Preconditioning", Acta Numer., 24, 329-376. https://doi.org/10.1017/S0962492915000021
- Wilson, J.D. and Naff, R.L. (2010), "Multigrid preconditioned conjugate-gradient solver for mixed finiteelement method", Comput. Geosci., 14(2), 289-299. https://doi.org/10.1007/s10596-009-9152-z
- Xu, J. and Zikatanov, L. (2017), "Algebraic multigrid methods", Acta Numer., 26, 591-721. https://doi.org/10.1017/S0962492917000083