DOI QR코드

DOI QR Code

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University)
  • 투고 : 2018.06.14
  • 심사 : 2018.09.13
  • 발행 : 2018.12.25

초록

In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.

키워드

참고문헌

  1. Akbas, S.D. (2015c), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., 54(3), 433-451. https://doi.org/10.12989/SEM.2015.54.3.433
  2. Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stress., 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397
  3. Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Prob. Eng., 14.
  4. Akbas, S.D. (2014), "Large post-buckling behaviour of Timoshenko beams under axial compression loads", Struct. Eng. Mech., 51(6), 955-971. https://doi.org/10.12989/SEM.2014.51.6.955
  5. Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stab. Dyn., 15(4), 1450065. https://doi.org/10.1142/S0219455414500655
  6. Akbas, S.D. (2015b), "Post-buckling analysis of axially functionally graded three dimensional beams", Int. J. Appl. Mech., 7(3),1550047. https://doi.org/10.1142/S1758825115500477
  7. Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/SCS.2017.24.5.579
  8. Akbas, S.D. (2018a), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/SCS.2018.26.6.733
  9. Akbas, S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/SEM.2018.66.1.027
  10. Akbas S.D. (2018c), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567-576. https://doi.org/10.12989/SCS.2018.27.5.567
  11. Akbas, S.D. (2018d), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/SEM.2018.67.4.337
  12. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  13. Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010) "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93, 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005
  14. Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011) "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vess. Pip., 88, 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
  15. Benselama, K., El Meiche, N., Bedia, E.A.A. and Tounsi, A. (2015), "Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory", Struct. Eng. Mech., 55(1), 47-64. https://doi.org/10.12989/SEM.2015.55.1.047
  16. Cardosov, JB., Benedito, N.M. and Valido, A.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin-Wall. Struct., 47(11), 1363-1372. https://doi.org/10.1016/j.tws.2009.03.002
  17. Chen, WJ. and Li, X.P. (2013) "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83, 431-444. https://doi.org/10.1007/s00419-012-0689-2
  18. Civalek, O. (2006) "The determination of frequencies of laminated conical shells via the discrete singular convolution method", J. Mech. Mater. Struct., 1, 163-182. https://doi.org/10.2140/jomms.2006.1.163
  19. Civalek, O. (2008) "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first order shear deformation theory", J. Compos. Mater., 42, 2853-2867. https://doi.org/10.1177/0021998308096952
  20. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
  21. Civalek, O. and Demir, C. (2016) "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352.
  22. Cunedioglu, Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., 51(1), 111-130. https://doi.org/10.12989/sem.2014.51.1.111
  23. Di Sciuva, M. and Icardi, U. (1995), "Large deflection of adaptive multilayered Timoshenko beams", Compos. Struct., 31(1), 49-60. https://doi.org/10.1016/0263-8223(95)00001-1
  24. Donthireddy, P. and Chandrashekhara, K. (1997), "Nonlinear thermomechanical analysis of laminated composite beams", Adv. Compos. Mater., 6(2), 153-166. https://doi.org/10.1163/156855197X00049
  25. Ebrahimi, F. and Hosseini, S.H.S. (2017), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Eur. Phys. J. Plus, 132(4), 172. https://doi.org/10.1140/epjp/i2017-11400-6
  26. Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. https://doi.org/10.1016/j.compstruct.2008.06.006
  27. Fraternali, F. and Bilotti, G. (1997), "Nonlinear elastic stress analysis in curved composite beams", Comput. Struct., 62(5), 837-859. https://doi.org/10.1016/S0045-7949(96)00301-X
  28. Ganapathi, M., Patel, B.P., Saravanan, J. and Touratier, M. (1998), "Application of spline element for largeamplitude free vibrations of laminated orthotropic straight/curved beams", Compos. Part B: Eng., 29(1), 1-8. https://doi.org/10.1016/S1359-8368(97)00025-5
  29. Ghazavi, A. and Gordaninejad, F. (1989), "Nonlinear bending of thick beams laminated from bimodular composite materials", Compos. Sci. Technol., 36(4), 289-298. https://doi.org/10.1016/0266-3538(89)90043-2
  30. Gurses, M., Civalek, O., Korkmaz, A. and Ersoy, H. (2009) "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Meth. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
  31. Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775
  32. Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481
  33. Kurtaran, H. (2015), "Geometrically nonlinear transient analysis of thick deep composite curved beams with generalized differential quadrature method", Compos. Struct., 128, 241-250. https://doi.org/10.1016/j.compstruct.2015.03.060
  34. Latifi, M., Kharazi, M. and Ovesy, H.R. (2016), "Nonlinear dynamic response of symmetric laminated composite beams under combined in-plane and lateral loadings using full layerwise theory", Thin-Wall. Struct., 104, 62-70. https://doi.org/10.1016/j.tws.2016.03.006
  35. Li, Z.M. and Qiao, P. (2015), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028
  36. Li, Z.M. and Yang, D.Q. (2016), "Thermal postbuckling analysis of anisotropic laminated beams with tubular cross-section based on higher-order theory", Ocean Eng., 115, 93-106. https://doi.org/10.1016/j.oceaneng.2016.02.017
  37. Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Struct. Eng. Mech., 53(4), 767-780. https://doi.org/10.12989/SEM.2015.53.4.767
  38. Loja, M.A.R., Barbosa, J.I. and Soares, C.M.M. (2001), "Static and dynamic behaviour of laminated composite beams", Int. J. Struct. Stab. Dyn., 1(4), 545-560. https://doi.org/10.1142/S0219455401000354
  39. Machado, S.P. (2007), "Geometrically non-linear approximations on stability and free vibration of composite beams", Eng. Struct., 29(12), 3567-3578. https://doi.org/10.1016/j.engstruct.2007.08.009
  40. Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlin. Sci. Numer. Simulat., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
  41. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040
  42. Mororo, L.A.T., Melo, A.M.C.D. and Parente Junior, E. (2015), "Geometrically nonlinear analysis of thinwalled laminated composite beams", Lat. Am. J. Sol. Struct., 12(11), 2094-2117. https://doi.org/10.1590/1679-78251782
  43. Oh, I.K., Han, J.H. and Lee, I. (2000), "Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermo-piezoelectric loads", J. Sound Vibr., 233(1), 19-40. https://doi.org/10.1006/jsvi.1999.2788
  44. Oliveira, B.F. and Creus, G.J. (2003), "Nonlinear viscoelastic analysis of thin-walled beams in composite material", Thin-Wall. Struct., 41(10), 957-971. https://doi.org/10.1016/S0263-8231(03)00042-9
  45. Pagani, A. and Carrera, E. (2017), "Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation", Compos. Struct., 170, 40-52. https://doi.org/10.1016/j.compstruct.2017.03.008
  46. Pai, P.F. and Nayfeh, A.H. (1992), "A nonlinear composite beam theory", Nonlin. Dyn., 3(4), 273-303. https://doi.org/10.1007/BF00045486
  47. Patel, B.P., Ganapathi, M. and Touratier, M. (1999), "Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation", Compos. Struct., 46(2), 189-196. https://doi.org/10.1016/S0263-8223(99)00054-9
  48. Patel, S.N. (2014), "Nonlinear bending analysis of laminated composite stiffened plates", Steel Compos. Struct., 17(6), 867-890. https://doi.org/10.12989/SCS.2014.17.6.867
  49. Shen, H.S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Meth. Appl. Mech. Eng., 190, 5377-5390. https://doi.org/10.1016/S0045-7825(01)00172-4
  50. Shen, H.S., Chen, X. and Huang, X.L. (2016), "Nonlinear bending and thermal postbuckling of functionally graded fiber reinforced composite laminated beams with piezoelectric fiber reinforced composite actuators", Compos. Part B: Eng., 90, 326-335. https://doi.org/10.1016/j.compositesb.2015.12.030
  51. Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069
  52. Singh, G., Rao, G.V. and Iyengar, N.G.R. (1992), "Nonlinear bending of thin and thick unsymmetrically laminated composite beams using refined finite element model", Comput. Struct., 42(4), 471-479. https://doi.org/10.1016/0045-7949(92)90114-F
  53. Stoykov, S. and Margenov, S. (2014), "Nonlinear vibrations of 3D laminated composite beams", Math. Probl. Eng.
  54. Topal, U. (2017), "Buckling load optimization of laminated composite stepped columns", Struct. Eng. Mech., 62(1), 107-111. https://doi.org/10.12989/SEM.2017.62.1.107
  55. Valido, A.J. and Cardoso, J.B. (2003), "Geometrically nonlinear composite beam structures: design sensitivity analysis", Eng. Optim., 35(5), 531-551. https://doi.org/10.1080/03052150310001604784
  56. Vinson, J.R. and Sierakowski, R.L. (2002), The behavior of Structures Composed of Composite Materials, Kluwer Academic Publishers, the Netherlands.
  57. Wang, X., Lu, G. and Xiao, D.G. (2002), "Non-linear thermal buckling for local delamination near the surface of laminated cylindrical shell", Int. J. Mech. Sci., 44(5), 947-965. https://doi.org/10.1016/S0020-7403(02)00028-0
  58. Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008

피인용 문헌

  1. Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads vol.34, pp.1, 2018, https://doi.org/10.12989/scs.2020.34.1.075
  2. Stiffness of hybrid systems with and without pre-stressing vol.9, pp.2, 2020, https://doi.org/10.12989/csm.2020.9.2.147
  3. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  4. Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
  5. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.263