References
- Alfaiate, J., Wells, G.N. and Sluys, L.J. (2002), "On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture", Eng. Fract. Mech., 69(6), 661-686. https://doi.org/10.1016/S0013-7944(01)00108-4
- Armero, F. and Garikipati, K. (1995), "Recent advances in the analysis and numerical simulation of strain localization in inelastic solids. In Owen, E., Onate, D.R.J., Hinton, E. (Eds)", Proceedings of the Computational Plasticity IV, CIMNE, Barcelona, 547-561.
- Armero, F. and Linder, C. (2009), "Numerical simulation of dynamic fracture using finite elements with embedded discontinuities", Int. J. Fract., 160(2), 119-141. https://doi.org/10.1007/s10704-009-9413-9
- Arrea, M. and Ingraffea, A.R. (1982), Mixed-Mode Crack Propagation in Mortar and Concrete, Report No. 81-13, Department of Structural Engineering, Cornell University, Ithaca, New York, U.S.A.
- Bazant, Z.P. (1976), "Instability, ductility, and size effect in strain-softening concrete", J. Eng. Mech. Div., 102, 331-344.
- Bazant, Z.P., Belytschko, T.B. and Chang, T.P. (1984), "Continuum theory for strain softening", J. Eng. Mech., 110(12), 1666-1691. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1666)
- Brancherie, D. and Ibrahimbegovic, A. (2009), "Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Part I: Theoretical formulation and numerical implementation", Eng. Comput., 26(1/2), 100-127. https://doi.org/10.1108/02644400910924825
- Cervera, M., Oliver, J. and Manzoli, O. (1995), "A rate dependent isotropic damage model for the seismic analysis of concrete dams", Earthq. Eng. Struct. Dyn., 25, 987-1010.
- De Borst, R., Sluys, L.J., Muhlhaus, H.B. and Pamin, J. (1993), "Fundamental issues in finite element analyses of localization of deformation", Eng. Comput., 10, 99-121. https://doi.org/10.1108/eb023897
- Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2017), "Dynamics framework for 2D anisotropic continuum-discrete damage model for progressive localized failure of massive structures", Comput. Struct., 183, 14-26. https://doi.org/10.1016/j.compstruc.2017.01.011
- Dujc, J., Brank, B. and Ibrahimbegovic, A. (2013), "Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids", Int. J. Numer. Meth. Eng., 94(12), 1075-1098. https://doi.org/10.1002/nme.4475
- Fahrenthold, E.P. (1991), "A continuum damage for facture of brittle solids under dynamic loading", J. Appl. Mech., 58(4), 904-909. https://doi.org/10.1115/1.2897704
- Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities", Int. J. Numer. Meth. Eng., 79(11), 1309-1331. https://doi.org/10.1002/nme.2579
- Grady, D.E. and Kipp, M.E. (1980), "Continuum modelling of explosive fracture in oil shale", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17(3), 147-157. https://doi.org/10.1016/0148-9062(80)91361-3
- Hamdi, E., Romdhane, N.B. and Le Cleac'h, J.M. (2011), "A tensile damage model for rocks: Application to blast induced damage assessment", Comput. Geotech., 38(2), 133-141. https://doi.org/10.1016/j.compgeo.2010.10.009
- Huespe, A.E., Oliver, J., Sanchez, P.J., Blanco, S. and Sonzogni, V. (2006), "Strong discontinuity approach in dynamic fracture simulations", Mecan. Comput., 25, 1997-2018.
- Ibrahimbegovic, A. and Melnyk, S. (2007), "Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method", Comput. Mech., 40(1), 149-155. https://doi.org/10.1007/s00466-006-0091-4
- Ibrahimbegovic, A. and Wilson, E.L. (1991), "A modified method of incompatible modes", Commun. Appl. Numer. Meth., 7(3), 187-194. https://doi.org/10.1002/cnm.1630070303
- Linder, C. and Armero, F. (2007), "Finite element with embedded strong discontinuities for the modeling of failure in solids", Numer. Meth. Eng., 72(12), 1391-1433. https://doi.org/10.1002/nme.2042
- Lu, Y. and Xu, K. (2004), "Modelling of dynamic behaviour of concrete materials under blast loading", Int. J. Sol. Struct., 41(1), 131-143. https://doi.org/10.1016/j.ijsolstr.2003.09.019
- Needleman, A. (1988), "Material rate dependence and mesh sensitivity in localization problems", Comput. Meth. Appl. Mech. Eng., 63(1), 69-85.
- Oliver, J. (1996), "Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part I & Part II", Int. J. Numer. Meth. Eng., 39(21), 3575-3623. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
- Oliver, J. (2000), "On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations", Int. J. Sol. Struct., 37(48-50), 7207-7229. https://doi.org/10.1016/S0020-7683(00)00196-7
- Petersson, P.E. (1981), Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, Report No. TVBM-1006, Division of Building Materials, University of Lund, Lund, Sweden.
- Radulovic, R., Bruhns, O.T. and Mosler, J. (2011), "Effective 3D failure simulations by combining the advantages of embedded strong discontinuity approaches and classical interface elements", Eng. Fract. Mech., 78(12), 2470-2485. https://doi.org/10.1016/j.engfracmech.2011.06.007
- Rots, J.G., Nauta, P., Kusters, G.M.A. and Blaauwendraad, J. (1985), "Smeared crack approach and fracture localization in concrete", Heron, 30(1), 1-48.
- Saksala, T., Brancherie, D., Harari, I. and Ibrahimbegovic, A. (2015), "Combined continuum damageembedded discontinuity model for explicit dynamic fracture analyses of quasi-brittle materials", Int. J. Numer. Meth. Eng., 101(3), 230-250. https://doi.org/10.1002/nme.4814
- Simo, J.C. and Rifai, M.S. (1990), "A class of mixed assumed strain methods and the method of incompatible modes", Int. J. Numer. Meth. Eng., 29(8), 1595-1638. https://doi.org/10.1002/nme.1620290802
- Simo, J.C., Oliver, J. and Armero, F. (1993), "An analysis of strong discontinuity induced by strain softening solutions in rate-independent solids", J. Comput. Mech., 12(5), 277-296. https://doi.org/10.1007/BF00372173
- Suaris, W. and Shah, S.P. (1984), "Rate-sensitive damage theory for brittle solids", J. Eng. Mech., 110(6), 985-997. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:6(985)
- Taylor, L.M., Chen, E.P. and Kuszmaul, J.S. (1986), "Microcrack-induced damage accumulation in brittle rock under dynamic loading", Comput. Meth. Appl. Mech. Eng., 55(3), 301-320. https://doi.org/10.1016/0045-7825(86)90057-5
- Wang, Z., Li, Y. and Wang, J.G. (2008), "A method for evaluating dynamic tensile damage of rock", Eng. Fract. Mech., 75(10), 2812-2825. https://doi.org/10.1016/j.engfracmech.2008.01.005
- Yang, R., Bawden, W.F. and Katsabanis, P.D. (1996), "A new constitutive model for blast damage", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(3), 245-254. https://doi.org/10.1016/0148-9062(95)00064-X
- Yazdchi, M., Valliappan, S. and Zhang, W. (1996), "Continuum model for dynamic damage evolution of anisotropic brittle materials", Int. J. Numer. Meth. Eng., 39(9), 1555-1583. https://doi.org/10.1002/(SICI)1097-0207(19960515)39:9<1555::AID-NME917>3.0.CO;2-J
- Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method: Basic Formulation and Linear Problems, McGraw-Hill, London, U.K.