Fig. 1. Purification and antimicrobial activity of hemocyte extract of M. coruscus. The extract was fractionated by the CapCell-Pak C18 reversed-phase column. Elution was performed with a linear gradient of 5-65% CH3CN in 0.1% TFA for 60 min at a flow rate of 1 ml/min. The eluate was monitored at 220 nm. Fraction of the absorbance peak (indicated by the arrow) showed antimicrobial activity against B. subtilis (inset). The elution point of the active peak was at 29% CH3CN. Scale bar indicates 5 mm.
Fig. 2. Final purification of pooled active fraction and antimicrobial activity. The active fraction was applied to a PEPTIDE XB-C18 reversed-phase column. Elution was performed with a linear gradient of 20-40% CH3CN in 0.1% TFA for 30 min at a flow rate of 0.5 ml/min. The eluate was monitored at 220 nm. The elution point of the active peak was at 33% CH3CN (indicated by the arrow). Antimicrobial activity of the purified peak (before) and proteinase K treated purified peak (after) against B. subtlis. Scale bar indicates 5 mm.
Fig. 3. The molecular weight of the purified peptide was determined using an ultraflleXtremeTM MALDI TOF/MS spectrometer equipped with a pulsed smart beam II in linear mode. The molecular weight of the purified peptide is 4041.866 Da.
Fig. 4. Multiple alignment of nucleotide sequences of mytilin B precursor and mytilin B isoforms. Signal peptide is indicated by grey box. The mature peptide and polyadenylation signal is indicated by black outlined. Conserved residues are indicated by dot.
Fig. 5. Amino acid sequence alignment of mytilin B precursor with 4 isoform of mytilin B. Signal peptide and mature peptide regions were outlined by black boxes. Conserved residues of amino acids are indicated by dot.
Fig. 6. Hemolytic activity of mytilin B1, mytilin B2 and piscidin 1 against erythrocytes of flounder (Paralichthys olivaceus). (A) The concentration of each sample was 100 μg/ml. (B) Effect of hemolytic activity depend on the concentrations of each samples (100, 50, 25, 12.5, 6.5 μg/ml).
Fig. 7. Morphological differences of HUVEC after 24 hr growth with each specimens. (A) HUVEC control (B) HUVEC treated with mytilin B1 (C) HUVEC treated with mytilin B2 (D) HUVEC treated with melittin.
Fig. 8. Cell viability of HUVEC treated with mytilin B after 24 hr growth. Error bars represent the mean ± SD of three technical replicates.
Fig. 9. Quantitative analysis of the mytilin B gene expression level from the various tissues. HEP; hepatopancreas, SIP; siphon, GIL; gill, ADD; adductor muscle, FOO; foot, HEM; hemocyte, MAN: mantle. Error bars represent the mean ± SD of three technical replicates.
Table 1. Pathogenic bacteria strains used in this study
Table 2. Antimicrobial activity of hemocyte extract of M. coruscus against pathogenic bacteria
Table 3. Antimicrobial activity and stability of mytilin B1 and mytilin B2 against pathogenic bacteria under heat & salt conditions
Table 4. Minimal effective concentrations (MECs, μg/ml) of mytilin B antimicrobial peptides
References
- Anderson, R. and Beaven, A. 2001. Antibacterial activities of oyster (Crassostrea virginica) and mussel (Mytilus edulis and Geukensia demissa) plasma. Aquat. Living Resour. 14, 343-349. https://doi.org/10.1016/S0990-7440(01)01143-3
- Bartlett, T. C., Cuthbertson, B. J., Shepard, E. F., Chapman, R. W., Gross, P. S. and Warr, G. W. 2002. Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Mar. Biotechnol. 4, 278-293. https://doi.org/10.1007/s10126-002-0020-2
- Boehm, T., Iwanami, N. and Hess, I. 2012. Evolution of the immune system in the lower vertebrates. Annu. Rev. Genomics Hum. Genet. 13, 127-149. https://doi.org/10.1146/annurev-genom-090711-163747
- Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immumol. 13, 61-92. https://doi.org/10.1146/annurev.iy.13.040195.000425
- Cerne, K., Erman, A. and Veranic, P. 2013. Analysis of cytotoxicity of melittin on adherent culture of human endothelial cells reveals advantage of fluorescence microscopy over flow cytometry and haemocytometer assay. Protoplasma 250, 1131-1137. https://doi.org/10.1007/s00709-013-0489-8
- Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J. A. and Bulet, P. 1996. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem. 271, 21808-21813. https://doi.org/10.1074/jbc.271.36.21808
- Dimarcq, J. L., Bulet, P., Hetru, C. and Hoffmann, J. 1998. Cystein-rich antimicrobial peptides in invertebrates. Biopolymers 47, 465-477. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-#
- Epand, R. M. and Vogel, H. J. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1462, 11-28. https://doi.org/10.1016/S0005-2736(99)00198-4
- Fred, J. G., Aswani, K. V., Leah, M. O. and William, S. F. 1999. Factors influencing in vitro killing of bacteria by hemocytes of the eastern oyster (Crassostrea virginica). Appl. Environ. Microbiol. 65, 3015-3020.
- Gerdol, M., Puillandre, N., De Moro, G., Guamaccia, C., Lucafo, M., Benincasa, M., Zlatev, V., Manfrin, C., Torboli, V., Giulianini, P. G., Sava, G., Venier, P. and Pallavicini, A. 2015. Identification and characterization of a novel family of cysteine-rich peptides (MgCRP-I) from Mytilus galloprovincialis. Genome Biol. Evol. 7, 2203-2219. https://doi.org/10.1093/gbe/evv133
- Gerdol, M. and Venier, P. 2015. An updated molecular basis for mussel immunity. Fish Shellfish Immunol. 46, 17-38. https://doi.org/10.1016/j.fsi.2015.02.013
- Hsieh, I. N. and Hartshorm, K. L. 2016. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals 9, 53. https://doi.org/10.3390/ph9030053
- Jung, S., Sonnichsen, F. D., Hung, C. W., Tholey, A. Boidan-Wichlacz, C., Haeusgen, W., Gelhaus, C., Desel, C., Podschun, R., Waetzig, V., Tasiemski, A., Leippe, M. and Grotzinger, J. 2012. Macin family of antimicrobial proteins combines antimicrobial and nerve repair activities. J. Biol. Chem. 287, 14246-14258. https://doi.org/10.1074/jbc.M111.336495
- Kim, D. G., Nam, B. H., Kong, H. J., Kim, W. J., Kim, B. S., Jee, Y. J., Lee, S. J., J, C. G., Kong, M. S. and Kim, Y. O. 2012. Analysis of hemolytic microflora from the ark shell (Scapharca broughtonii). J. Life Sci. 22, 642-649. https://doi.org/10.5352/JLS.2012.22.5.642
- Leoni, G., De poli, A., Mardirossian, M., Gambato, S., Florian, F., Venier, P., Wilson, D. N., Tossi, A., Pallavicini, A. and Gerdol, M. 2017. Myticalins: a novel multigenic family of linear, cationic antimicrobial peptides from marine mussels (Mytilus spp.). Mar. Drugs 15, 261. https://doi.org/10.3390/md15080261
- Liao, Z., Wang, X. C., Liu, H. H., Fan, M. H., Sun, J. J. and Shen, W. 2013. Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus. Fish Shellfish Immunol. 34, 610-616. https://doi.org/10.1016/j.fsi.2012.11.030
- Malagili, D., Sacchi, S. and Ottaviani, E. 2010. Lectins and cytokines in celomatic invertebrates: two tales with the same end. Invertbrate Surviv. J. 7, 1-10.
- Mitta, G., Hubert, F., Dyrynda, E. A., Boudry, P. and Roch, P. 2000. Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev. Comp. Immunol. 24, 381-393. https://doi.org/10.1016/S0145-305X(99)00084-1
- Mitta, G., Hubert, F., Noel, T. and Roch, P. 1999. Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur. J. Biochem. 265, 71-78. https://doi.org/10.1046/j.1432-1327.1999.00654.x
- Mitta, G., Vandenbulcke, F., Hubert, F. and Roch, P. 1999. Mussel defensins are synthesized and processed in granulocytes then released into the plasma after bacterial challenge. J. Cell. Sci. 112, 4233-4242.
- Mitta, G., Vandenbulcke, F., Hubert, F., Salzet, M. and Roch, P. 2000. Involvement of mytilins in mussel antimicrobial defense. J. Biol. Chem. 275, 12954-12962. https://doi.org/10.1074/jbc.275.17.12954
- Mitta, G., Vandenbulcke, F., Noel, T., Romenstand, B., Beauvillain, J. C., Salzet, M. and Roch, P. 2000. Differential distribution and defence involvement of antimicrobial peptides in mussel. J. Cell. Sci. 113, 2759-2769.
- Mitta, G., Vandenbulcke, F. and Roch, P. 2000. Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett. 486, 185-190. https://doi.org/10.1016/S0014-5793(00)02192-X
- Miyata,T., Tokunaga, F., Yoneya, T., Yoshikawa, K., Iwanaga, S., Niwa, M., Takao, T. and Shimonishi, Y. 1989. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J. Biochem. 106, 663-668. https://doi.org/10.1093/oxfordjournals.jbchem.a122913
- Oh, R., Lee, M. J., Kim, Y. O., Nam, B. H., Kong, H. J., Kim, J. W., An, C. M. and Kim, D. G. 2016. Isolation and purification of antimicrobial peptide from hard-shelled mussel, Mytilus coruscus. J. Life Sci. 26, 1259-1268. https://doi.org/10.5352/JLS.2016.26.11.1259
- Oh, R., Lee, M. J., Kim, Y. O., Nam, B. H., Kong, H. J., Kim, J. W., Park, J. Y., Seo, J. K. and Kim, D. G. 2017. The antimicrobial characteristics of McSSP-31 purified from the hemocyte of the hard-shelled mussel, Mytilus coruscus. J. Life Sci. 27, 1276-1289.
- Park, E. H., Shin, E. H., Kim, Y. O., Kim, D. G., Kong, H. J., Kim, W. J., An, C. M. and Nam, B. H. 2016. Cloning, characterization, and expression of the macrophage migration inhibitory factor gene from the pacific abalone (Haliotis discus hannai). Kor. J. Malacol. 32, 241-247. https://doi.org/10.9710/kjm.2016.32.4.241
- Pipe, R. K. 1990. Differential binding of lectins to haemocytes of the mussel Mytilus edulis. Cell Tissue Res. 261, 261-268. https://doi.org/10.1007/BF00318667
- Qin, C. L., Huang, W., Zhou, S. Q., Wang, X. C., Liu, H. H., Fan, M. H., Wang, R. X., Gao, P. and Liao, Z. 2014. Characterization of a novel antimicrobial peptide with chitin-binding domain from Mytilus coruscus. Fish Shellfish Immunol. 41, 362-370. https://doi.org/10.1016/j.fsi.2014.09.019
- Rosh, P., Yang, Y., Toubiana, M. and Aumelas, A. 2008. NMR structure of mussel mytilin, and antiviral-antibacterial activities of derived synthetic peptides. Dev. Comp. Immonol. 32, 227-238. https://doi.org/10.1016/j.dci.2007.05.006
- Seo, J. K., Kim, D. G., Oh, R., Park, K. S., Lee, I. A., Cho, S. M., Lee, K. Y. and Nam, B. H. 2017. Antimicrobial effect of the 60S ribosomal protein L29 (cgRPL29), purified from the gill of pacific oyster, Crassostrea gigas. Fish Sellfish Immunol. 67, 675-683. https://doi.org/10.1016/j.fsi.2017.06.058
- Seo, J. K., Lee, M. J., Go, H. J., Kim, G. D., Jeong, H. D., Nam, B. H. and Park, N. G. 2013. Purification and antimicrobial function of ubiquitin isolated from the gill of Pacific oyster, Crassostrea gigas. Mol. Immunol. 53, 88-98. https://doi.org/10.1016/j.molimm.2012.07.003
-
Seo, J. K., Lee, M. J., Jung, H. G., Go, H. J., Kim, Y. J. and Park, N. G. 2014. Antimicrobial function of
$SH{\beta}AP$ , a novel hemoglobin${\beta}$ chain-related antimicrobial peptide, isolated from the liver of skipjack tuna, Katsuwonus pelamis. Fish Sellfish Immunol. 37, 173-183. https://doi.org/10.1016/j.fsi.2014.01.021 - Seo, J. K., Lee, M. J., Nam, B. H. and Park, N. G. 2013. cgMolluscidin, a novel dibasic residue repeat rich antimicrobial peptide, purified from the gill of the Pacific oyster, Crassostrea gigas. Fish Sellfish Immunol. 35, 480-488. https://doi.org/10.1016/j.fsi.2013.05.010
- Shike, H., Lauth, X., Westerman, M. E., Ostland, V. E., Carlberg, J. M., Van Lost, J. C., Shimizu, C., Bulet, P. and Burns, J. C. 2002. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur. J. Biochem. 269, 2232-2237. https://doi.org/10.1046/j.1432-1033.2002.02881.x
- Soderhall, K., Iwanaga, S. and Vasta, G. R. 1996. New direction in invertebrate immunology. SOS Publications 494.
- Tam, J. P., Lu, Y. A. and Yang, J. L. 2000. Marked increase in membranolytic selectivity of novel cyclic tachyplesins contrained with an antiparallel two-beta strand cysteine knot framework. Biochem. Biophys. Res. Commun. 267, 783-790. https://doi.org/10.1006/bbrc.1999.2035
- Taylor, S. W., Kammerer, B. and Bayer, E. 1997. New perspectives in the chemistry and biochemistry of the tunichromes and related compounds. Chem. Rev. 97, 333-346. https://doi.org/10.1021/cr940467q
- Tincu, J. A. and Taylor, S. W. 2004. Antimicrobial peptides from marine invertebrates. Antimicrob. Agents Chemother. 48, 3645-3654. https://doi.org/10.1128/AAC.48.10.3645-3654.2004
- Wright, R. K. 1981. Urochordates. Academic Press 2, 565-626.
- Yoo, S. K. 1986. Coastal culture. Gudeok Publisher 141-158.
- Yuan, T., Zhang, X., Hu, Z., Wang, F. and Lei, M. 2012. Molecular dynamics studies of the antimicrobial peptides piscidin 1 and its mutants with a DOPC lipid bilayer. Biopolymers 97, 998-1009. https://doi.org/10.1002/bip.22116
- Yu, G., Baeder, D. Y., Reqoes, R. R. and Rolff, J. 2016. Combination effects of antimicrobial peptides. Antimicrob. Agents Chemother. 60, 1717-1724. https://doi.org/10.1128/AAC.02434-15