DOI QR코드

DOI QR Code

발효기간에 따른 돌산갓김치의 glucosinolates 함량변화와 항산화, 항고혈압 및 항당뇨활성과의 상관관계

Changes in Glucosinolate Content of Dolsan Leaf Mustard Kimchi during Fermentation and Correlation with Antioxidant, Antihypertensive, and Antidiabetic Activities

  • 오선경 (전남대학교 생명산업공학과) ;
  • 김기웅 (전남대학교 해양바이오식품학과) ;
  • 최명락 (전남대학교 생명산업공학과)
  • Oh, Sun-Kyung (Department of Biotechnology, Chonnam National University) ;
  • Kim, Ki-Woong (Department of Marine Bio Food Science, Chonnam National University) ;
  • Choi, Myeong-Rak (Department of Biotechnology, Chonnam National University)
  • 투고 : 2018.09.28
  • 심사 : 2018.11.12
  • 발행 : 2018.11.30

초록

돌산갓김치의 조추출물을 이용하여 glucosinolates함량, 항산화활성, 항고혈압 및 항당뇨활성을 측정하였다. Glucosinolates 함량은 DLMK의 잎과 줄기에서 6.41, 7.92 mg/g으로 발효기간 중 낮은 함량을 나타냈다. Total polyphenol과 total flavonoid함량은 줄기보다 잎에서 발효기간 동안 2배 이상의 함량을 나타냈다. ABTS라디컬 소거활성과 EDA은 발효 14일째 대조군과 유사한 활성을 나타냈고, FRAP는 발효 14일째 잎에서 대조군보다 높은 함량을 나타냈다. 그리고 항고혈압 활성(ACE 저해활성)은 잎에서 대조군인 0.01% captopril과 비슷하거나 높은 저해활성을 나타냈으며, 항당뇨활성(${\alpha}$-glucosidase 저해활성)은 대조군인 0.05% acarbose보다 잎, 줄기에서 높은 저해활성을 나타냈다. 또한 glucosinolates 함량과 ABTS 및 EDA, ACE 저해활성 및 ${\alpha}$-glucosidase 저해활성의 상관관계는 줄기 추출물 보다 잎 추출물이 높은 양의 상관관계를 나타냈다. 발효기간 중 glucosinolates는 sinigrin, glucobrassicin, glucotropaeolin, progoitrin 검출되었다. 이 결과를 통해 돌산 갓김치 추출물은 항산화, 항고혈압 및 항당뇨활성에 효과가 높은 것으로 나타냈기에 기능성 식품으로서 가치가 높을 것으로 기대된다.

The glucosinolate content, antioxidant activity, and antihypertensive and antidiabetic activities were measured in a crude extract of Dolsan leaf mustard kimchi (DLMK). The glucosinolate content was low at 6.41 and 7.92 mg/g in leaves and stems of DLMK after 21 days of fermentation. The total polyphenol and total flavonoid contents were more than 2 times higher in the leaves (211.7 mg GAE/g, 158.8 mg QE/g) than in the stem (53.7 mg GAE/g, 85.2 mg QE/g) during the fermentation period. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and electron donating ability (EDA) were similar to those of the control group after 14 days of fermentation, while the ferric reducing antioxidant power (FRAP) was higher in the leaves after 14 days of fermentation when compared to the control group. The angiotensin converting enzyme (ACE) inhibitory activity showed similar or higher inhibitory activity in the leaves when compared to the control group (0.01% captopril), and the ${\alpha}$-glucosidase inhibitory activity was higher in the leaves and stems when compared to the control group (0.05% acarbose). The glucosinolate content and the ABTS, ACE, and ${\alpha}$-glucosidase inhibitory activity were correlated, as determined by the observed straight line plot with a positive grade. During the fermentation period, the detected glucosinolates were sinigrin, glucobrasicin, glucotropeolin, and progoitrin. The DLMK extract is therefore expected to be valuable as a functional food because of its effective antioxidant, antihypertensive, and antidiabetic activities.

키워드

SMGHBM_2018_v28n11_1290_f0001.png 이미지

Fig. 1. Changes in total polyphenol (A) and total flavonoid (B) content in DLMK during the fermentation period. Vertical bars represents standard deviation (n=3). Same small letters (a-b) are not significantly different (p<0.05) by Duncan’s multiple test.

SMGHBM_2018_v28n11_1290_f0002.png 이미지

Fig. 2. Changes in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity (A), electron donating ability (EDA) (B) and ferric reducing antioxidant power (FRAP) (C) in DLMK during the fermentation period. Vertical bars represents standard deviation (n=3). Same small letters (a-c) are not significantly different (p<0.05) by Duncan’s multiple test.

SMGHBM_2018_v28n11_1290_f0003.png 이미지

Fig. 3. Changes in angiotensin-converting enzyme (ACE) (A) and α-glucosidase (B) inhibitory activities of DLMK during the fermentation period. Vertical bars represents standard deviation (n=3). Same small letters (a-c) are not significantly different (p<0.05) by Duncan’s multiple test.

SMGHBM_2018_v28n11_1290_f0004.png 이미지

Fig. 4. Glucosinolates content of leaves and stems extracts of DLMK and correlations between measured electron donating ability (EDA) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging (A, C) and angiotensin-converting enzyme (ACE) and α-glucosidase inhibitory activities (B, D).

SMGHBM_2018_v28n11_1290_f0005.png 이미지

Fig. 5. Mass spectra showing retention times and MS/MS fragments at m/z 369.12, 302.07, 317.07, and 479.11, representing glucobrassicin (A), sinigrin (B), glucotropaeolin (C), and progoitrin (D), respectively, in DLMK extract. It represents ESI full scan mode and ESI ms2.

Table 1. Content of glucosinolates in DLMK extracts during the fermentation period

SMGHBM_2018_v28n11_1290_t0001.png 이미지

참고문헌

  1. Benzie, M. S. 1958. Antioxidants determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  2. Choi, S. W., Kang, W. W., Chung, S. K. and Cheon, S. H. 1996. Antioxidative activity of flavonoids in persimmon leaves. Food Sci. Biotechnol. 2, 119-123.
  3. Choi, Y. M., Gu, J. B., Kim, M. H. and Lee, J. S. 2008. Antioxidant and antiproliferative activities of methanolic extracts from thirty Korean medicinal plants. Food Sci. Biotechnol. 17, 1235-1239.
  4. Cieslik, E., Leszczynska, T., Filipiak-Florliewicz, A., Sikora, E. and Pisulewski, P. 2007. Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem. 105, 976-981. https://doi.org/10.1016/j.foodchem.2007.04.047
  5. Cushman, D. W. and Cheung, H. S. 1971. Spectrophotometric assay and properties of the angiotensin conververting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
  6. David, S. S. 1995. Plant Secondary Metabolism. KLUWER ACADEMIC PUBLISHER. pp. 300-310.
  7. Fernandes, C. F. and Shahani, K. M. 1990. Anticarcinogenic and immunological properties of dietary. J. Food Prot. 53, 704-707. https://doi.org/10.4315/0362-028X-53.8.704
  8. Ferreres, F., Gomes, D., Valentao, P., Goncalved, R., Pio, R., Chagas, E. A., Seabra, R. M. and Andrade, P. B. 2009. Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chem. 114, 1019-1027. https://doi.org/10.1016/j.foodchem.2008.10.065
  9. Fisher, P. B., Karlsson, G. B., Dwek, R. A. and Platt, F. M. 1996. N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with impaired qp120 shedding and qp41 exposure. J. Virol. 70, 7153-7160.
  10. Harbaum, B., Hubbermann, E. M., Zhu, Z. and Schwarz, K. 2008. Impact of fermentation on phenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese leaf mustard (Brassica juncea Coss). J. Agric. Food Chem. 56, 148-157. https://doi.org/10.1021/jf072428o
  11. Huang, D., Ou, B. and Prior, R. L. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841-1856. https://doi.org/10.1021/jf030723c
  12. Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoid contents in mulberry and they scavenging effects on super-oxide radicals. Food Chem. 64, 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  13. Jang, M. Y. 2013. A study on the nutrient composition and antioxidants of leaf mustard (Brassica juncea). MS thesis, Chonnam University, Korea
  14. Jung, S. J., Kim, M. J. and Chae, S. W. 2016. Quality and functional characteristics of kimchi made with organically cultivated young Chinese cabbage (olgari-baechu). J. Ethnic Foods. 3, 150-158. https://doi.org/10.1016/j.jef.2016.05.003
  15. Kim, J. O., Kim, M. N., Park, K. Y., Moon, S. H., Ha, Y. L. and Rhee, S. H. 1993. Antimutagenic effects of 4-decanol identified from mustard leaf. J. Kor. Agric. Chem. Soc. 36, 424-427.
  16. Kim, S. B., Lee, T. G., Park, Y. B., Yeum, D. M., Kim, O. K., Byun, H. S. and Park, Y. H. 1993. Characeristic of angiotensin I converting enzyme inhibitors derived from fermented fish product. Bull. Kor. Fish. Soc. 26, 416-417.
  17. Kriengsak, T., Unaroj, B., Kevin, C., Luis, C. Z. and David, H. B. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal. 19, 669-675. https://doi.org/10.1016/j.jfca.2006.01.003
  18. Lee, B. B., Park, S. R., Han, C. S., Han, D. Y., Park, E. J., Park, H. R. and Lee, S. C. 2008. Antioxidant activity and inhibition activity against ${\alpha}$-amylase and ${\alpha}$-glucosidase of viola mandshurica extracts. J. Kor. Soc. Food Sci. Nutr. 37, 405-409. https://doi.org/10.3746/jkfn.2008.37.4.405
  19. Lee, J. N., Kim, S. W., Yoo, Y. K., Lee, G. T. and Lee, K. K. 2006. Antiwrinkle effect of Morinda citrifolia (Noni) extracts. J. Kor. Soc. Cosmet. Scientists 32, 227-231.
  20. Lee, Y. O. and Cheigh, H. S. 1996. Antioxidant activity of various solvent extracts from freeze dried kimchi. J. Life Sci. 6, 66-71.
  21. Lim, H. S. 2002. The study for contents of sinigrin in Dolsan Leaf Mustard kimchi during fermentation periods. J. Life Sci. 12, 523-527. https://doi.org/10.5352/JLS.2002.12.5.523
  22. Lim, H. S., Yoo, E. J. and Choi, M. R. 2000. Changes physiological activity of Mustard Leaf during its fermentation period. J. Microbiol. Biotechnol. 10, 43-47.
  23. Noh, H. and Song, K. B. 2001. Isolation of an angiotensin converting enzyme inhibitor from Oenanthe javanica. Agric. Chem. Biotechnol. 44, 98-99.
  24. Oh, S. K., Kim, K. W. and Choi, M. R. 2016. Antioxidant activity of different parts of Dolsan leaf mustard. Food Sci. Biotechnol. 25, 1463-1467. https://doi.org/10.1007/s10068-016-0227-z
  25. Oh, S. K., Tsukamoto, C., Kim, K. W. and Choi, M. R. 2017. Investigation of glucosinolates, and the antioxidant activity of Dolsan leaf mustard kimchi extract using HPLC and LC-PDA-MS/MS. J. Food Biochem. e 12366.
  26. Park, K. Y. 1995. The nutritional evaluation, and antimutagenic and anticancer effects of kimchi. J. Kor. Soc. Food Nutr. 24, 169-182.
  27. Park, K. Y., Baek, K. A., Rhee, S. H. and Cheigh, H. S. 1995. Antimutagenic effect of kimchi. Foods Biotech. 4, 141-143.
  28. Park, S. K., Cho, Y. S., Park, J. R., Chun, S. S. and Moon, J. S. 1993. Non-volatile organic acid, mineral, fatty acid and fiber compositions in Dolsan Leaf Mustard (Brassica juncea). J. Kor. Soc. Food Nutr. 22, 53-57.
  29. Pratt, D. E., Huang, M. T., Ho, S. T. and Lee, C. Y. 1992. In phenolic compound in food and their effects on health (II), antioxidants and cancer prevention. PP 54-71, Washington DC.
  30. Roberty, R., Anna, P., Catherine, R. E. and Min, P. Icolettap. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  31. Sa, Y. J., Kim, J. S., Kim, M. O., Jeong, H. J., Yu, C. Y., Park, D. S. and Kim, M. J. 2010. Comparative study of electron donating ability, reducing power, antimicrobial activity and inhibition of ${\alpha}$-glucosidase by Sorghum bicolor extracts. J. Kor. Food Sci. Biotechnol. 42, 598-604.
  32. Seong, G. U., Hwang, I. W. and Chung, S. K. 2016. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chem. 199, 612-618. https://doi.org/10.1016/j.foodchem.2015.12.066
  33. Shin, J. I., Ahn, C. W., Nam, H. S., Lee, H. J., Lee, H. J. and Moon, T. H. 1995. Fractionati-on of angiotensin converting enzyme (ACE) inhibitory peptides from soybean paste. J. Kor. Food Sci. Technol. 27, 230-234.
  34. Singleton, V. L. and Rossi, J. A. Jr. 1965. Colorimetry of total phenolics with phosphomoly bdicphosphotungstic acid reagent. Am. J. Enol. Viticult. 16, 144-158.
  35. Son, H. R., Oh, S. K., Bae, S. O. and Choi, M. R. 2016. Analysis of physicochemical property and antioxidative activity of Napa cabbage pickle. J. Life Sci. 26, 1275-1281. https://doi.org/10.5352/JLS.2016.26.11.1275
  36. Song, E. S., Jeon, Y. S. and Cheigh, H. S. 1997. Changes in chlorophylls and carotenoids of mustard leaf Kimchi during fermentation and their antioxidative activities on the lipid oxidation. J. Kor. Soc. Food Sci. Nutr. 26, 563-568.
  37. Song, H. N. 2013. Quality analysis for recycle of the drained soybean boiling water discarded in the mass production of fermented soy foods. Kor. J. Food Cookery Sci. 29, 525-531. https://doi.org/10.9724/kfcs.2013.29.5.525
  38. Song, L. and Thornalley, P. J. 2007. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem. Toxicol. 45, 216-224. https://doi.org/10.1016/j.fct.2006.07.021
  39. Tanielian, C. and Wolff, C. 1988. Mechanism of physical quenching of singlet molecular oxygen by chlorophylls and related compounds of biological interest. J. Photochem. Photobiol. 3, 277-280.
  40. Tsao, R., Yu, Q., Potter, J. and Chiba, M. 2002. Direct and simultaneous analysis of sinigrin and allyl Isothiocyanate in mustad samples by High-Performance Liquid Chromatography. J. Agric Food Chem. 50, 4749-4753. https://doi.org/10.1021/jf0200523
  41. Wang, M. F., Shao, Y., Li, J. G., Zhu, N. Q. and Ho, C. T. 1998. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 46, 4869-4873. https://doi.org/10.1021/jf980614b
  42. Watanabe, J., Kawabata, J., Kurihara, H. and Niki, R. 1997. Isolation and identification of alpha-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 177-178. https://doi.org/10.1271/bbb.61.177
  43. Wattenberg, W. and Loud, W. D. 1987. Inhibition of polycyclic aromatic hydrocarbon induced neopasa by naturally occurring indoles. J. Cancer Res. 38, 1410-1413.
  44. Wolff, S. P., Jiang, Z. Y. and Hunt, J. V. 1991. Protein glycation and oxidative stress in diaetes mellitus and ageing. Free Radic. Biol. Med. 10, 339-352. https://doi.org/10.1016/0891-5849(91)90040-A