DOI QR코드

DOI QR Code

26 GCM 결과를 이용한 미래 홍수피해액 예측

Flood damage cost projection in Korea using 26 GCM outputs

  • 김묘정 (경북대학교 건설환경에너지공학부) ;
  • 김광섭 (경북대학교 건설환경에너지공학부)
  • Kim, Myojeong (School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Kim, Gwangseob (School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University)
  • 투고 : 2018.07.31
  • 심사 : 2018.11.12
  • 발행 : 2018.11.30

초록

본 연구는 우리나라 113개 중권역에 대한 기후변화에 따른 미래 홍수 피해액의 예측을 위하여 26개 GCM 모형에서 생산한 강우자료와 1시간 최대 강수량, 10분 최대 강수량, 1일 강수량이 80 mm 초과한 일수, 일 최대 강수량, 연강수량, 유역고도, 시가화율, 인구 밀도, 자산 밀도, 도로와 같은 사회 간접 시설, 하천개수율, 하수도 보급률, 배수펌프시설, 유수지용량 및 과거 홍수 피해액 자료를 활용하였다. 구축된 자료에 대하여 구속 다중선형회귀 모형(Constrained Multiple Linear Regression Model)을 적용하여 홍수 피해액과 여타 입력자료 사이의 상관관계를 구축하고 RCP 4.5와 8.5에 대한 26개 GCM 모형 산정자료를 활용하여 미래 홍수 피해액을 예측하였다. 홍수피해에 주된 요인이 되는 연강수량, 극치 강우량 등 강우관련 요소들이 전반적으로 증가하며 이로 인하여 과거 홍수로 인한 피해액이 광범위하게 증가할 것으로 판단되고 특히 동해안 및 남강댐 유역에 미래의 홍수피해액이 높게 예측되는 경향을 보인다.

This study aims to predict the future flood damage cost of 113 middle range watersheds using 26 GCM outputs, hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount, DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity and previous flood damage costs. A constrained multiple linear regression model was used to construct the relationships between the flood damage cost and other variables. Future flood damage costs were estimated for different RCP scenarios such as 4.5 and 8.5. Results demonstrated that rainfall related factors such as annual rainfall amount, rainfall extremes etc. widely increase. It causes nationwide future flood damage cost increase. Especially the flood damage cost for Eastern part watersheds of Kangwondo and Namgang dam area may mainly increase.

키워드

SJOHCI_2018_v51nspc_1149_f0001.png 이미지

Fig. 1. Average Flood Risk Index According to FVI, PSR, and DPSIR Methods (2000-2015) (Kim and Kim, 2018)

SJOHCI_2018_v51nspc_1149_f0002.png 이미지

Fig. 2. Comparison between Flood Damage Cost Observation and Estimates Using CMLR Model (2000-2015)

SJOHCI_2018_v51nspc_1149_f0003.png 이미지

Fig. 3. Average of the Hydrological Characteristics for Different Target Periods and RCP Scenarios

SJOHCI_2018_v51nspc_1149_f0004.png 이미지

Fig. 4. Average of the Flood Damage Cost for Different Target Periods and RCP Scenarios

SJOHCI_2018_v51nspc_1149_f0005.png 이미지

Fig. 5. Standard Deviation of the Flood Damage Cost for Different Target Periods and RCP Scenarios

Table 1. List of input data

SJOHCI_2018_v51nspc_1149_t0001.png 이미지

Table 2. List of used GCMs

SJOHCI_2018_v51nspc_1149_t0002.png 이미지

Table 3. Correlation Coefficient by Flood Damage Cost According to FVI, PSR, and DPSIR Methods

SJOHCI_2018_v51nspc_1149_t0003.png 이미지

Table 4. Test Statistics of the Flood Damage Cost Estimates by the CMLR Model

SJOHCI_2018_v51nspc_1149_t0004.png 이미지

참고문헌

  1. Aronica, G. T., Franza, F., Bates, P. D., and Neal, J. C. (2012). "Probabilistic evaluation of flood hazard in urban areas using Monte Carlo simulation." Hydrological Processes, Vol. 26, No. 26, pp. 3962-3972. https://doi.org/10.1002/hyp.8370
  2. EEA (1999). Environmental indicators: typology and overview. Technical report No. 25.
  3. Ettinger, S., Mounaud, L., Magill, C., Yao-Lafourcade, A. F., Thouret, J. C., Manville, V., Negulescu, C., Zuccaro, G., Gregorio, D. D., Nardone, S., Uchuchoque, J. A. L., Arguedas, A., and Macedo, L. (2016). "Nelida Manrique Llerena I Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regression." Journal of Hydrology, Vol. 541, pp. 553-562. https://doi.org/10.1016/j.jhydrol.2016.02.052
  4. Hatzikyriakou, A., and Lin, N. (2017). "Simulating storm surge waves for structural vulnerability estimation and flood hazard mapping." Natural Hazards, Vol. 89, pp. 939-962. https://doi.org/10.1007/s11069-017-3001-5
  5. IPCC (2007). Climate change 2007: Impacts, Adaptation, and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
  6. Jun, K. S., Chung, E. S., Kim, Y. G., and Kim, Y. (2013). "A fuzzy multi-criteria approach to flood risk vulnerability in South Korea by considering climate change impacts." Expert Systems with Applications, Vol. 40, No. 4, pp. 1003-1013. https://doi.org/10.1016/j.eswa.2012.08.013
  7. Kandilioti, G., and Makropoulos, C. (2012). "Preliminary flood risk assessment: the case of Athens." Natural hazards, Vol. 61, No. 2, pp. 441-468. https://doi.org/10.1007/s11069-011-9930-5
  8. Kim, H. S., Park, G. J., Kim, S. D., Choi, M. H., Park, M. J., and Yoon, J. Y. (2012). "Assessment of Flood Vulnerability Considering Climate Change and Large-Scale River Restoration Project." Journal of The Korean Society of Hazard Mitigation, Vol. 12, No. 2, pp. 107-113. (in Korean) https://doi.org/10.9798/KOSHAM.2012.12.2.107
  9. Kim, J. H., Han, K. Y., and Seo, K. W. (2003). "Application of Uncertainty Method fer Analyzing Flood Inundation in a River." Journal of Korea Water Resources Association, Vol. 36, No. 4, pp. 661-671. (in Korean) https://doi.org/10.3741/JKWRA.2003.36.4.661
  10. Kim, J., Choi, C., and Yi, J. (2011). "Development of Flood control Effect Index by Using Fuzzy Set Theory." Journal of the Korean Society of Civil Engineers B, Vol. 31, No. 5A, pp. 415-429. (in Korean)
  11. Kim, M., and Kim G. (2018). "Analysis of the Applicability of Flood Risk Indices According to Flood Damage Types." Journal of the Korean Society of Civil Engineers, Vol. 38, No. 1, pp. 29-39. (in Korean) https://doi.org/10.12652/KSCE.2018.38.1.0029
  12. Kim, T. H., Han, K. Y., and Cho, W. H. (2011). "Vulnerability Analysis in the Nakdong River Basin for the Utilization of Flood Risk Mapping." Journal of the Korean Association of Geographic Information Studies, Vol. 14, No. 3, pp. 203-222. (in Korean) https://doi.org/10.11108/kagis.2011.14.3.203
  13. Lee, M. W., Kim, T. W., and Moon, G. W. (2013). "Assessment of Flood Damage Vulnerability Considering Regional Flood Damage Characteristics in South Korea." Journal of The Korean Society of Hazard Mitigation, Vol. 13, No. 4, pp.245-256. (in Korean) https://doi.org/10.9798/KOSHAM.2013.13.4.245
  14. Masood, M., and Takeuchi, K. (2012). "Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model." Natural hazards, Vol. 61, No. 2, pp. 757-770. https://doi.org/10.1007/s11069-011-0060-x
  15. OECD (1993). OECD core set of indicators for environmental performance reviews. OECD Environment Monographs, No. 83.
  16. Park, M., Song, Y., Joo, J., and Park, M. (2013). "A Study on Urban Flood Vulnerability Assessment." Journal of The Korean Society of Hazard Mitigation, Vol. 13, No. 5, pp. 297-305. (in Korean) https://doi.org/10.9798/KOSHAM.2013.13.5.297
  17. Sung, J. H., Baek, H. J., Kang, H. S., and Kim, Y. O. (2012). "The Assessment of Future Flood Vulnerability for Seoul Region." Journal of Wetlands Research, Vol. 14, No. 3, pp. 341-352. (in Korean) https://doi.org/10.17663/JWR.2012.14.3.341
  18. Yoon, S. K., Kim, J. S., and Moon, Y. I. (2014). "Integrated flood risk analysis in a changing climate: A case study from the Korean Han River Basin." KSCE Journal of Civil Engineering, Vol. 18, No. 5, pp. 1563-1571. (in Korean) https://doi.org/10.1007/s12205-014-0147-5
  19. Zachos, L. G., Swann, C. T., Altinakar, M. S., McGrath, M. Z., and Thomas, D. (2016). "Flood vulnerability indices and emergency management planning in the Yazoo Basin, Mississippi." International Journal of Disaster Risk Reduction, Vol. 18, pp. 89-99. https://doi.org/10.1016/j.ijdrr.2016.03.012