DOI QR코드

DOI QR Code

Change in Biodiversity and Community Structures in Agricultural Fields depending on Different Farming Methods

농법 차이에 따른 농경지 생태계의 생물 다양성 및 군집 구조의 변화

  • 김훈 (단국대학교 자연과학대학 생명과학과) ;
  • 김교진 (단국대학교 자연과학대학 생명과학과) ;
  • 순옌 (단국대학교 자연과학대학 생명과학과) ;
  • 조영주 (단국대학교 공공인재대학 환경자원경제학과) ;
  • 김태연 (단국대학교 공공인재대학 환경자원경제학과) ;
  • 문명진 (단국대학교 자연과학대학 생명과학과)
  • Received : 2018.10.04
  • Accepted : 2018.11.22
  • Published : 2018.11.30

Abstract

Organic agriculture is well known to be not only affecting the physical and chemical status of the soil but also closely connected to the biodiversity through complex community structure and ecological interactions. Current study monitored and analyzed the invertebrate biodiversity of organic and conventional paddy fields and upland fields from April, 2017 to August, 2017. Total of 680 species (with 14,371 individuals) were confirmed - more number of species were identified at the organic agriculture practicing fields. According to the various indices analysis, organic paddy field showed about 40% higher diversity index, while organic upland field showed about 10% higher diversity index. Richness index at organic paddy field was 60% higher compared to conventional paddy field, while organic upland field showed 40% higher value. Dominance and evenness index at conventional agriculture practicing fields were low, which possibly indicate at least partial dominance phenomenon. Hemipteran, dipteran and aranean species showed highest diversity in all fields, while dipteran, hemipteran, aranean and coleopteran species had highest diversity in conventional agriculture practicing fields.

유기 농업은 토양에 물리적, 화학적 영향을 미칠 뿐 아니라 이에 따른 군집 구조와 생태적 영향을 통해 생물 다양성과 직접적으로 연관되어 있는 것으로 알려져 있다. 본 연구는 2017년 4월부터 10월까지 충청북도 괴산 내 유기 농법 및 관행 농법 시행 논과 밭에서 육상 및 저서 무척추동물상 모니터링을 수행하고 그에 따른 종 다양성의 변화를 비교 분석하였다. 그 결과, 네 곳에서 총 680종(14,371개체)이 확인되었으며 유기 농법을 시행하는 지역에서 더 많은 종 수가 확인되었다. 특히 개체 수에 따른 다양한 지수 분석을 시행한 결과, 유기 농법 시행 논에서 관행 농법 시행 논에 비해 약 40% 높은 다양성이 관찰되었고, 밭의 경우 유기 농법 시행 지역에서 약 10% 높은 다양성이 확인되었다. 종 풍부도의 경우 유기 농법 시행 논에서 약 60% 높게 나타났고, 유기 농법 시행 밭에서는 약 40% 높게 나타났다. 우점도와 균등도 지수 분석 결과, 관행 농법 시행 논에서만 낮은 균등도와 특정 종의 우점도가 높게 나타나 부분적인 우점화 현상이 나타나고 있음을 확인하였다. 종 분포의 경우 네 곳 모두에서 노린재목, 파리목, 거미목의 다양성이 가장 높게 나타났으며, 개체 수의 경우 유기 농법 시행 지역에서는 노린재목, 파리목, 거미목, 벌목의 개체 수가 가장 많았고, 관행 농법 시행 지역에서는 파리목, 노린재목, 거미목, 딱정벌레목의 개체 수가 높게 나타났다.

Keywords

References

  1. Altieri, M. A. 1999. The Ecological Role of Biodiversity in Agroecosystems. Agr. Ecosyst. Environ. 74: 19-31. https://doi.org/10.1016/S0167-8809(99)00028-6
  2. Bengtsson, J., J. Ahnstrom, and A. Weibull. 2005. The Effects of Organic Agriculture on Biodiversity and Abundance: a Meta-analysis. J. Appl. Ecol. 42: 261-269. https://doi.org/10.1111/j.1365-2664.2005.01005.x
  3. Billeter, R., J. Liira, D. Bailey, et al. 2008. Indicators for Biodiversity in Agricultural Landscapes: a Pan-European Study. J. Appl. Ecol. 45: 141-150.
  4. Boutin, C., A. Baril, and P. A. Martin. 2008. Plant Diversity in Crop Fields and woody Hedgerows of Organic and Conventional Farms in Contrasting Landscape. Agric. Ecosys. Environ. 123: 185-193. https://doi.org/10.1016/j.agee.2007.05.010
  5. Buser, C. C., P. Spaak, and J. Wolinska. 2012. Disease and Pollution Alter Daphnia Taxonomic and Clonal Structure in Experimental Assemblages. Freshw. Biol. 57: 1865-1874. https://doi.org/10.1111/j.1365-2427.2012.02846.x
  6. Cônsoli1, F. L., J. R. P. Parra, and S. A. Hassan. 2009. Side-effects of Insecticides Used in Tomato Fields on The Egg Parasitoid Trichogramma pretiosum Riley (Hym., Trichogrammatidae), A Natural Enemy of Tuta absoluta (Meyrick) (Lep., Gelechiidae). J. Appl. Entomol. 122: 43-47.
  7. De Roeck, E. 2005. Trends of some Agri-environmental Indicators in the European Union. Report EUR 21 669 EN, European Commission Directorate General Joint Research Centre, Ispra, Italy.
  8. Desneux, N., A. Decourtye, and J. M. Delpuech. 2007. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu. Rev. Entomol. 52: 81-106. https://doi.org/10.1146/annurev.ento.52.110405.091440
  9. Dinesh, G. K., P. T. Ramesh, N. Chitra, and M. P. Sugumaran. 2018. Ecology of Birds and Insects in Organic and Conventional (In-Organic) Rice Ecosystem. Int. J. Curr. Microbiol. App. Sci. 7: 1769-1779.
  10. Ekstrom, G., and B. Ekbom. 2011. Pest Control in Agro-ecosystems: An Ecological Approach. Crit. Rev. Plant Sci. 30: 74-94. https://doi.org/10.1080/07352689.2011.554354
  11. Gabriel, D., S. M. Sait, W. E. Kunin, and T. G. Benton. 2013. Food Production vs. Biodiversity: Comparing Organic and Conventional Agriculture. J. Appl. Ecol. 50: 355-364. https://doi.org/10.1111/1365-2664.12035
  12. German, R. N., C. E. Thompson, and T. G. Benton. 2016. Relationships among multiple aspects of agriculture's environmental impact and productivity: a meta-analysis to guide sustainable agriculture. Biol. Rev. 92: 716-738.
  13. Grant, I. F., A. C. Tirol, T. Aziz, and I. Watanabe. 1983. Regulation of Invertebrate Grazers as a Means to Enhance Biomass and Nitrogen Fixation of Cyanophyceae in Wetland Rice Fields, Soil Sci. Soc. Am. J. 47: 669-675. https://doi.org/10.2136/sssaj1983.03615995004700040013x
  14. Han, M. S., H. K. Nam, K. K. Kang, M. R. Kim, Y. E., Na, H. R., Kim and M. H., Ki. 2013. Characteristics of Benthic Invertebrates in Organic and Conventional Paddy Field. Korean J. Environ. Agric. 32: 17-23. https://doi.org/10.5338/KJEA.2013.32.1.17
  15. Hole, D. G., A. J. Perkins, J. D. Wilson, I. H. Alexander, P. V. Grice, and A. D. Evans. 2005. Does Organic Farming Benefit Biodiversity? Biol. Conserv. 122: 113-130. https://doi.org/10.1016/j.biocon.2004.07.018
  16. Jarvis, D. I., C. Padoch, and H. D. Cooper. 2010. Managing Biodiversity in Agricultural Ecosystems (in Korean). Rural Development Administration Republic of Korea. 203-232p.
  17. Jung, O. S., H. B. Yeo, N. H. Heo, H. R. Jang, H. J. Oh, and G. J. H. Sa. 2013. Promotion of Biodiversity for Sustainability of Agriculture. Chungnam Development Institute.
  18. Kim, H., J. H. Seo, K. J. Kim, G. I. Choi, Y. J. Jo, T. Y. Kim, and M. J. Moon. 2017. Comparative Analysis on the Invertebrate Biodiversity between Organic and Conventional Agriculture Fields. Korean J. Org. Agric. 25: 875-900. https://doi.org/10.11625/KJOA.2017.25.4.875
  19. Kim, T. Y. 2018. The Use of Agri-environment Concept in the Legislation and the Improvements in South Korea. Korean J. Org. Agric. 26: 83-97. https://doi.org/10.11625/KJOA.2018.26.1.83
  20. Klaus, V. H., T. Kleinebecker, D. Prati, M. M. Gossner, F. Alt, S. Boch, S. Gockel, A. Hemp, M. Lange, J. Muller, Y. Oelmann, E. Pasalic, S. C. Renner, S. A. Socher, M. Turke, W. W. Weisser, M. Fischer, and N. Holzel. 2013. Does Organic Grassland Farming Benefit Plant and Arthropod Diversity at the Expense of Yield and Soil Fertility? Agric. Ecosyst. Environ. 177: 1-9. https://doi.org/10.1016/j.agee.2013.05.019
  21. Lampert, W. and U. Sommer. 1997. Limnoecology. Oxford University Press.
  22. Lee, M., E. J. Han, J. H. Park, S. J. Hong, S. M. Kang, and J. H. Kim. 2014. Utilization of Organic Farming for in situ Conservation of Biodiversity.: Rahmanh, G. U. Aksoy (eds.) Proceedings of the 4th ISOFAR Scientific Conference: 'Building Organic Bridges'. 4: 953-956. Istanbul, Turkey.
  23. Lee, S. Y., S. T. Kim, J. S. Im, J. K. Jung, and J. H. Lee. 2013. Comparison of Community Structure and Biodiversity of Arthropos between Conventional and Organic Red Pepper Fields. Korean J. Organic Agric. 21: 601-615. https://doi.org/10.11625/KJOA.2013.21.4.601
  24. Letourneau, D. K. and B. Goldstein, 2001. Pest Damage and Arthropod Community Structure in Organic vs. Conventional Tomato Production in California. J. Appl. Ecol. 38: 557-570. https://doi.org/10.1046/j.1365-2664.2001.00611.x
  25. Loureiro, C., J. L. Pereira, M. A. Pedrosa, F. Goncalves, and B. B. Castro. 2013. Competitive Outcome of Daphnia-Simocephalus Experimental Microcosms: Salinity versus Priority Effects. PLoS One 8: e70572. https://doi.org/10.1371/journal.pone.0070572
  26. Ma, S. M. and S. Joachim. 2006. Review of History and Recent Development of Organic Farming Worldwide. Agr. Sci. China. 5: 169-178. https://doi.org/10.1016/S1671-2927(06)60035-7
  27. Margalef, D. R. 1958. Information Theory in Ecology. Gen. Syst. 3: 36-71.
  28. McNaughton, S. J. 1967. Relationship among Functional Properties of California Grassland. Nature. 216: 168-144.
  29. Mesleard, F., S. Garnero, N. Beck, and E. Rosecchi. 2005. Uselessness and Indirect Negative Effects of an Insecticide on Rice Field Invertebrates. C. R. Biol. 328: 955-962. https://doi.org/10.1016/j.crvi.2005.09.003
  30. Michelsen, J. 2001. Recent Development and Political Acceptance of Organic Farming in Europe. J. Eur. Soc. Rural Sociol. 41: 3-20. https://doi.org/10.1111/1467-9523.00167
  31. Montanez, M. N. and A. A. Suarez. 2014. Impact of Organic Crops on the Diversity of Insects: A Review of Recent Research. Rev. Colomb. Entomol. 40: 131-142.
  32. Morris, E. K., T. Caruso, F. Buscot, M. Fischer, C. Hancock, T. S. Maier, T. Meiners, C. Muller, E. Obermaier, D. Prati, S. A. Socher, I. Somnemann, N. Waschke, T. Wubet, S. Wurst, and M. C. Rillig. 2014. Choosing and Using Diversity Indices: Insights for Ecological Applications from the German Biodiversity Exploration. Ecol. Evol. 4: 3514-3524. https://doi.org/10.1002/ece3.1155
  33. Park, K. L., M. J. Kong, N. C. Kim, and J. K. Son. 2012. The Analysis of Vegetation Characteristics of Organic Rice Paddy for Value Assessment of the Rice Paddy Wetland. J. Wetlands Res. 14: 59-73.
  34. Pielou, E. C. 1966. The Measurement of Diversity in Different Types of Biological Collections. J. Theor. Biol. 13: 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  35. Pielou, E. C. 1975. Ecological Diversity. Wiley, New York.
  36. Pluess, T., I. Opatovsky, G. E. Regev, Y. Lubin, and M. H. Schmidt. 2008. Spiders in Wheat Fields and Semi-desert in the Negev (Israel). J. Arachnol. 36: 368-373. https://doi.org/10.1636/CT07-116.1
  37. Plumecocq, G., T. Debril, M. Duru, M. Magrini, J. Sarthou, and O. Therond. 2018. The Plurality of Values in Sustainable Agriculture Models: Diverse Lock-in and Coevolution Patterns. Ecol. Soc. 23(1): 21.
  38. Ponce, C., C. Bravo, D. G. de Leon, M. Magana, and J. C. Alonso. 2011. Effects of Organic Farming on Plant and Arthropod Communities: A Case Study in Mediterranean Dryland Cereal. Agr. Ecosyst. Environ. 141: 193-201. https://doi.org/10.1016/j.agee.2011.02.030
  39. Power E. F. and J. C. Stout. 2011. Organic Dairy Farming: Impact on Insect-flower Interaction Networks and Pollination. J. Appl. Ecol. 48: 561-569. https://doi.org/10.1111/j.1365-2664.2010.01949.x
  40. Power, E. F., D. L. Kelly, and J. C. Stout. 2012. Organic Farming and Landscape Structure: Effects on Insect-Pollinated Plant Diversity in Intensively Managed Grasslands. PLoS ONE. 7: e38073. https://doi.org/10.1371/journal.pone.0038073
  41. Rockstrom, J., W. Steffen, K. Noone, A. Persson, F. S. Chapin, E. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sorlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liveman, K. Richardson, P. Crutzen, and J. Foley. 2009. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Nature. 461: 472-475. https://doi.org/10.1038/461472a
  42. Rundolf, M. and H. G. Smith. 2006. The Effect of Organic Farming on Butterfly Diversity Depends on Landscape Context. J. Appl. Ecol. 43: 1121-1127. https://doi.org/10.1111/j.1365-2664.2006.01233.x
  43. Song, J. H., Y. S. Cho, K. H. Lim, and H. C. Lee. 2013. Current Status of Pest Management and Biodiversity in Organic Pear Orchards in Korea. Korean J. Environ. Agric. 21: 617-627. https://doi.org/10.11625/KJOA.2013.21.4.617
  44. Takada M. B., S. Takagi, S. Iwabuchi, T. Mineta, and I. Washitani. 2014. Comparison of Generalist Predators in Winter-flooded and Conventionally Managed Rice Paddies and Identification of Their Limiting Factors. SpringerPlus. 3: 418. https://doi.org/10.1186/2193-1801-3-418
  45. Theiling, K. M. and B. A. Croft. 1988. Pesticide Side-effects on Arthropod Natural Enemies: A Database Summary. Agri. Ecosys. Environ. 21: 191-218. https://doi.org/10.1016/0167-8809(88)90088-6
  46. Tilman, D., J. Fargione, B. Wolff, C. Antonio, A. Dobson, and R. Howarth. 2001. Forecasting Agriculturally Driven Global Environmental Change. Science. 292: 281-284. https://doi.org/10.1126/science.1057544
  47. Tscharntke, T., A. M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies. 2005. Landscape Perspectives on Agricultural Intensification and Biodiversity-ecosystem Service Management. Ecol. Lett. 8: 857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
  48. Wascher, D. W. 2000. Agri-environmental Indicators for Sustainable Agriculture in Europe. Wascher, D. W. (ed). European Centre for Nature Conservation (ECNC Technical Report Series). Tilburg.
  49. Wezel, A., M. Casagrande, F. Celette, J. Vian, A. Ferrer, and J. Peigne. 2014. Agroecological Practices for Sustainable Agriculture: A Review. Agron. Sustain. Dev. 34: 1-20. https://doi.org/10.1007/s13593-013-0180-7
  50. Wilson, J., A. Morris, B. Arroyo, S. Clark, and R. Bradbury. 1999. A Review of the Abundance and Diversity of Invertebrate and Plant Foods of Granivorous Birds in Northern Europe in Relation to Agricultural Change. Agr. Ecosyst. Environ. 75: 13-30. https://doi.org/10.1016/S0167-8809(99)00064-X
  51. Wilson, A. L., D. S. Ryder, R. J. Watts, and M. M. Stevens. 2005. Stable Isotope Analysis of Aquatic Invertebrate Communities in Irrigated Rice Fields Cultivated Under Different Management Regimes. Aquat. Ecol. 39: 189-200. https://doi.org/10.1007/s10452-004-7085-0