DOI QR코드

DOI QR Code

Effect of Growth Methods of InAs Quntum Dots on Infrared Photodetector Properties

InAs 양자점 형성 방법이 양자점 적외선 소자 특성에 미치는 효과

  • Seo, Dong-Bum (Department of Materials Science & Engineering, Chungnam National University) ;
  • Hwang, Je-hwan (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Oh, Boram (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Noh, Sam Kyu (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Kim, Jun Oh (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Lee, Sang Jun (Division of Convergence Technology, Korea Research Institute of Standard Science) ;
  • Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
  • 서동범 (충남대학교 공과대학 신소재공학과) ;
  • 황제환 (한국표준과학연구원 융합물성측정센터) ;
  • 오보람 (한국표준과학연구원 융합물성측정센터) ;
  • 노삼규 (한국표준과학연구원 융합물성측정센터) ;
  • 김준오 (한국표준과학연구원 융합물성측정센터) ;
  • 이상준 (한국표준과학연구원 융합물성측정센터) ;
  • 김의태 (충남대학교 공과대학 신소재공학과)
  • Received : 2018.04.29
  • Accepted : 2018.10.16
  • Published : 2018.11.27

Abstract

We report the properties of infrared photodetectors based on two kinds of quantum dots(QDs): i) 2.0 ML InAs QDs by the Stranski-Krastanov growth mode(SK QDs) and ii) sub-monolayer QDs by $4{\times}[0.3ML/1nm\;In_{0.15}Ga_{0.85}As]$ deposition(SML QDs). The QD infrared photodetector(QDIP) structure of $n^+-n^-(QDs)-n^+$ is epitaxially grown on GaAs (100) wafers using molecular-beam epitaxy. Both the bottom and top contact GaAs layers are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown with Si doping of $2{\times}10^{17}/cm^3$ and capped by an $In_{0.15}Ga_{0.85}As$ layer at $495^{\circ}C$. The photoluminescence peak(1.24 eV) of the SML QDIP is blue-shifted with respect to that (1.04 eV) of SK QDIPs, suggesting that the electron ground state of SML QDIP is higher than that of the SK QDIP. As a result, the photoresponse regime(${\sim}9-14{\mu}m$) of the SML QDIP is longer than that (${\sim}6-12{\mu}m$) of the SK QDIP. The dark current of the SML QDIP is two orders of magnitude smaller value than that of the SK QDIP because of the inserted $Al_{0.08}Ga_{0.92}As$ layer.

Keywords

References

  1. H. Yuan, G. Apgar, J. Kim, J. Laquindanum, V. Nalavade, P. Beer, J. Kimchi and T. Wong, Proc. SPIE, 6940, 69403C1 (2008).
  2. P. Norton, J. Campbell III, S. Horn and D. Reago, Proc. SPIE, 4130, 226 (2000).
  3. S. Horn, P. Norton, T. Cincotta, A. J. Stoltz, Jr., J. D. Benson, P. Perconti and J. Campbell III, Proc. SPIE, 5074, 44 (2003).
  4. W. A. Radford, E. A. Patten, D. F. King, G. K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E. P. Smith, R. Graham, S. M. Johnson, J. Roth, B. Nosho and J. Jensen, Proc. SPIE, 5783, 325 (2005).
  5. A. Rogalski, Prog. in Quantum Electron., 27, 59 (2003). https://doi.org/10.1016/S0079-6727(02)00024-1
  6. B. F. Levine, J. Appl. Phys., 74, R1 (1993). https://doi.org/10.1063/1.354252
  7. A. Madhukar, J. Campbell, E. T. Kim, Z. H. Chen and J. Ye, in Semiconductor Nanostructures for Optoelectronics, Artech House, Inc., (2004).
  8. E. T. Kim, Z. H. Chen and A. Madhukar, Appl. Phys. Lett., 79, 3341 (2001). https://doi.org/10.1063/1.1417513
  9. Z. Ye, J. Campbell, Z. H. Chen, E. T. Kim and A. Madhukar, IEEE J. Quantum Electron., 38, 1234 (2002). https://doi.org/10.1109/JQE.2002.802159
  10. E. T. Kim, Z. H. Chen, M. Ho and A. Madhukar, J. Vac. Sci. Technol. B, 20, 1188 (2002). https://doi.org/10.1116/1.1463695
  11. S. J. Lee, J. O. Kim, Y. G. Kim, S. K. Noh, Y. H. Kyu, S. M. Choi and J. W. Choe, J. Korean Phys. Soc., 46, 1396 (2005).
  12. J. O. Kim, S. J. Lee, S. K. Noh, Y. H. Ryu, S. M. Choi and J. W. Choe, J. Korean Phys. Soc., 47, 838 (2005).
  13. David Z.-Y. Ting, Sumith V. Bandara, Sarath D. Gunapala, Jason M. Mumolo, Sam A. Keo, Cory J. Hill, John K. Liu, Edward R. Blazejewski, Sir B. Rafol, and Yia-Chung Chang. Appl. Phys. Lett., 94, 111107 (2009). https://doi.org/10.1063/1.3095812
  14. J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti and S. Krishna, Appl. Phys. Lett., 102, 011131 (2013). https://doi.org/10.1063/1.4774383