DOI QR코드

DOI QR Code

Hybridization of the Energy Generator and Storage Device for Self-Powered Electronics

자가구동형 전자소자 구현을 위한 에너지 발전/저장 소자 융합 기술 동향

  • Lee, Ju-Hyuck (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 이주혁 (대구경북과학기술원에너지공학전공)
  • Received : 2018.10.24
  • Accepted : 2018.11.05
  • Published : 2018.11.30

Abstract

Currently, hybridization of energy generator and storage devices is considered to be one of the most important energy-related technologies due to the possibility of replacing batteries or extending the lifetime of a batteries in accordance with increasing battery demand. This review aims to describe current progress on the mechanical energy generator and hybridization of energy generator and energy storage devices for self-powered electronics. First, the research trends related to energy generation devices using piezoelectric and triboelectric effect that convert physical energy into electric energy is introduced. In addition, integration of energy generators and energy storage devices is introduced. In particular, self-charging energy cells provide an innovative approach to the direct conversion of mechanical energy into electrochemical energy to decrease energy conversion loss.

최근 늘어나는 배터리 수요를 대처하기 위하여 배터리를 대체하거나 배터리의 구동시간을 늘리기 위한 방법으로 제시되고 있는 에너지 발전소자와 에너지 저장소자의 융합연구는 에너지 관련 기술분야에서 가장 관심받고 있는 분야중 하나이다. 본 리뷰논문에서는 물리에너지 발전소자의 최근 연구동향과 함께 에너지 발전소자와 저장소자의 융합연구 동향을 소개하고자 한다. 먼저, 물리에너지를 전기에너지로 변환하는 압전 특성과 마찰대전 특성을 이용한 에너지 발전소자 관련 연구동향을 소개한다. 또한 압전/마찰대전 에너지 발전소자와 에너지 저장소자의 융합 연구동향을 소개한다. 특히 자가충전 에너지소자의 물리에너지를 전기화학적 에너지로 변환하는 새로운 접근방법을 소개하고자 한다.

Keywords

JHHHB@_2018_v21n4_68_f0001.png 이미지

Fig. 6 Schematic diagram of module circuit for driving applications using energy generator and storage device.

JHHHB@_2018_v21n4_68_f0002.png 이미지

Fig. 1 (a) Invention of piezoelectric nanogenerator using vertically grown ZnO nanorods array with AFM tip.5) (b) Stretchable piezoelectric nanogenerator using wavy structured PZT Nanoribon on PDMS substrate.23) (c) Piezoelectric nanogenerator using micropatterned piezoelectric polymer P(VDF-TrFE).28)

JHHHB@_2018_v21n4_68_f0003.png 이미지

Fig. 2 (a) Monolayer top view geometry of (a) boron nitride (h-BN) and trigonal prismatic molybdenum disulfide (2HMoS2) with piezoelectric polarization, and calculated piezoelectric coefficient of TMDC.37) (b) Probing the piezoelectric property of free-standing monolayer MoS2 using piezoresponse force microscopy technique.38) (c) Experimental demonstration of the piezoelectric property of monolayer MoS2 based piezoelectric device.6) (d) Investigation of piezoelectric property of turbostratic stacking structured bilayer WSe2 based piezoelectric device.39)

JHHHB@_2018_v21n4_68_f0004.png 이미지

Fig. 3. (a) Supramolecular packing directs piezoelectric response in glycine amino acid crystals (left), and Simple energy harvesting method using ¥ᾶ-glycine crystals (right).43) (b) Growth of vertical FF peptide microrod arrays with controlled polarization and statistics of piezoelectric polarization direction of vertically grown FF peptide microrod measured by PFM method.46) (c) Schematic diagram depicting the fabrication process to create large-scale peptide nanotube arrays through meniscus-driven self-assembly, and unidirectional polarization of FF piezoelectric nanotubes measured by PFM method.47)

JHHHB@_2018_v21n4_68_f0005.png 이미지

Fig. 4 (a) Schematic illustration of power generation mechanism of triboelectric nanogenerator. (b) The four fundamental modes of triboelectric nanogenerator (vertical contact mode, lateral sliding mode, single electrode mode, and free-standing mode).

JHHHB@_2018_v21n4_68_f0006.png 이미지

Fig. 5 (a) Development of the triboelectric nanogenerator using micropatterned PDMS layer.49) (b) Development of the triboelectric nanogenerator using nano-porous structured PDMS layer.50) (c) Development of the textile-based wearable triboelectric nanogenerator using nanostructured PDMS layer, and demonstration of the Self-powered commercial LCD, LEDs, and a remote control (keyless vehicle entry system).51)

JHHHB@_2018_v21n4_68_f0007.png 이미지

Fig. 7 (a) Device structure of self-charging power cell by hybridizing a piezoelectric PVDF layer and a Li-ion battery, and (b) the working mechanism of the self-charging power cell driven by compressive strain.57)

JHHHB@_2018_v21n4_68_f0008.png 이미지

Fig. 8 (a) Schematic illustration for the working mechanism of the self-charging of hybrid piezoelectric-supercapacitor. (b) Self-charging profile of the hybrid piezoelectric-supercapacitor under an applied compressive force, and comparison of the charging voltage of the hybrid piezoelectric-supercapacitor under various applied compressive forces.65)

References

  1. J. Oh, H.-C. Yuan and H. M. Branz, 'An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures', Nat. Nanotechnol., 7, 743 (2012) https://doi.org/10.1038/nnano.2012.166
  2. Y. Qin, X. Wang and Z. L. Wang, 'Microfibre-nanowire hybrid structure for energy scavenging', Nature, 451, 809 (2007)
  3. M. Gratzel, 'Photoelectrochemical cells', Nature, 414, 338 (2001) https://doi.org/10.1038/35104607
  4. A. C. Dilion, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, 'Storage of hydrogen in single-walled carbon nanotubes', Nature, 386, 377 (1997) https://doi.org/10.1038/386377a0
  5. Z. L. Wang and J. Song, 'Piezoelectric nanogenerators based on zinc oxide nanowire arrays', Science, 312, 242 (2006). https://doi.org/10.1126/science.1124005
  6. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone and Z. L. Wang, 'Piezoelectricity of single-atomic-layer $MoS_2$ for energy conversion and piezotronics', Nature, 514, 470 (2014). https://doi.org/10.1038/nature13792
  7. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, 'Self-powered nanowire devices', Nat. Nanotechnol., 5, 366 (2010). https://doi.org/10.1038/nnano.2010.46
  8. F.-R. Fan, Z.-Q. Tian and Z. L. Wang, 'Flexible triboelectric generator', Nano Energy, 1, 328 (2012) https://doi.org/10.1016/j.nanoen.2012.01.004
  9. G. Zhu, J. Chen, T. Zhang, Q. Jing and Z. L. Wang, 'Radial-arrayed rotary electrification for high performance triboelectric generator', Nat. Commun., 5, 3426 (2014). https://doi.org/10.1038/ncomms4426
  10. Q. Jing, Y. Xie, G. Zhu, R. P. S. Han and Z. L. Wang, 'Self-powered thin-film motion vector sensor', Nat. Commun., 5, 8031 (2015)
  11. S. Kim, T. Y. Kim, K. H. Lee, T.-H. Kim, F. A. Cimini, S. K. Kim, R. Hinchet, S.-W. Kim, C. Falconi, 'Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics', Nat. Commun., 8, 15891 (2017) https://doi.org/10.1038/ncomms15891
  12. B. Y. Lee, J. Zhang, C. Zueger, W. J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh, and S. W. Lee. 'Virusbased Piezoelectric Energy Generation', Nat. Nanotechnol., 7, 351 (2012) https://doi.org/10.1038/nnano.2012.69
  13. C. Dagdeviren, B.D. Yang, Y. Su, P.L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, B. Lu, R. Poston, Z. Khalpey, R. Ghaffari, Y. Huang, M.J. Slepian and J.A. Rogers, 'Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm,' Proc. Natl. Acad. Sci., 111, 1927 (2014) https://doi.org/10.1073/pnas.1317233111
  14. J.-M. Tarascon, 'Issues and challenges facing lithium batteries', Nature, 414, (2001)
  15. T. H. Kim, J. S. Park, S. K. Chang, S. Choi, J. H. Ryu, H. K. Song, 'The current move of lithium ion batteries towards the next phase', Adv. Energy Mater., 2, (2012)
  16. B. Dunn, H. Kamath, and J.-M. Tarascon, 'Electrical Energy Storage for the Grid: A Battery of Choices', SCIENCE, 334, 928 (2011). https://doi.org/10.1126/science.1212741
  17. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S.-T. Myung, and K. Amine, 'Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries', Nat. Mater., 11, 942-947 (2012). https://doi.org/10.1038/nmat3435
  18. J. Curie, P. Curie, 'development par compression de l'electricite polaire dans les cristaux hemiedres a faces inclines', Comptes Rendus Acad. Sci. Paris 91, 294 (1880).
  19. M.-P. Lu, J. Song, M.-Y. Lu, M.-T. Chen, Y. Gao, L.-J. Chen and Z. L. Wang, 'Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays', Nano Lett., 9, 1223 (2009) https://doi.org/10.1021/nl900115y
  20. C.-T. Huang, J. Song, W.-F. Lee, Y. Ding, Z. Gao, Y. Hao, L.-J. Chen and Z. L. Wang, 'GaN Nanowire Arrays for High-Output Nanogenerators' J. Am. Chem. Soc., 132, 4766 (2010) https://doi.org/10.1021/ja909863a
  21. Y.-F. Lin, J. Song, Y. Ding, S.-Y. Lu and Z. L. Wang, 'Alternating the Output of a CdS Nanowire Nanogenerator by a White?Light?Stimulated Optoelectronic Effect', Adv. Mater., 20, 3127 (2008) https://doi.org/10.1002/adma.200703236
  22. C.-T. Huang, J. Song, C.-M. Tsai, W.-F. Lee, D.-H. Lien, Z. Gao, Y. Hao, L.-J. Chen and Z. L. Wang, 'Single-InNNanowire Nanogenerator with Upto 1 V Output Voltage', Adv. Mater., 22, 4008 (2010) https://doi.org/10.1002/adma.201000981
  23. Y. Qi, J. Kim, T. D. Nguyen, B. Lisko, P. L. Purohit, and M. C. McAlpine, 'Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons', Nano Lett., 11, 1331 (2011) https://doi.org/10.1021/nl104412b
  24. Z. Wang, J. Hu, A. P. Suryavanshi, K. Yum and M.-F. Yu, 'Voltage Generation from Individual $BaTiO_3$ Nanowires under Periodic Tensile Mechanical Load', Nano Lett., 7, 2966 (2007) https://doi.org/10.1021/nl070814e
  25. J. H. Jung, C.-Y. Chen, B. K. Yun, N. Lee, Y. Zhou, W. Jo, L-J. Chou and Z. L. Wang, 'Lead-free $KNbO_3$ ferroelectric nanorod based flexible nanogenerators and capacitors', Nanotechnology, 23, 375401 (2012) https://doi.org/10.1088/0957-4484/23/37/375401
  26. J. H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.- J. Chou and Z. L. Wang, 'Lead-Free $NaNbO_3$ Nanowires for a High Output Piezoelectric Nanogenerator' ACS Nano, 5, 10041 (2011). https://doi.org/10.1021/nn2039033
  27. C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh and L. Lin, 'Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency', Nano Lett., 10, 726 (2010) https://doi.org/10.1021/nl9040719
  28. J.-H. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D.-Y. Lee, J. Oh, C. Ryu, W. J. Yoo, C.-Y. Kang, S.-J. Yoon, J.-B. Yoo, S.-W. Kim, 'Highly Stretchable Piezoelectric- Pyroelectric Hybrid Nanogenerator', Adv. Mater., 26, 765 (2014) https://doi.org/10.1002/adma.201303570
  29. Q. Yang, W. wang, S. Xu, and Z. L. Wang, 'Enhancing Light Emission of ZnO Microwave-Based Diodes by Piezo-Phototronic Effect', Nano Lett., 11, 4012 (2011) https://doi.org/10.1021/nl202619d
  30. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, 'Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect' ACS Nano, 4, 6285 (2010) https://doi.org/10.1021/nn1022878
  31. Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, and Z. L. Wang, 'Piezotronic Effect on the Output Voltage of P3HT/ZnO Micro/Nanowire Heterojunction Solar Cells', Nano Lett., 11, 4812 (2011) https://doi.org/10.1021/nl202648p
  32. M. T. Ong, K.-A. N. Duerloo, and E. J. Reed, 'The Effect of Hydrogen and Fluorine Coadsorption on the Piezoelectric Properties of Graphene', J. Phys. Chem. C, 117, 3615 (2013) https://doi.org/10.1021/jp3112759
  33. M. N. Blonsky, H. L. Zhuang, A. K. Singh, and R. G. Hennig, 'Ab Initio Prediction of Piezoelectricity in Two- Dimensional Materials', ACS Nano, 9, 9885 (2015) https://doi.org/10.1021/acsnano.5b03394
  34. T. Li, K. Y. Zeng, 'Nano-hierarchical structure and electromechanical coupling properties of clamshell', J. Struct. Biol. 180, 73 (2012). https://doi.org/10.1016/j.jsb.2012.06.004
  35. N. Mikami, M. Honma, 'Ferroelectric liquid crystal alignment films utilizing poly(DL-amino acid)s and fibrous proteins', japan. j. pol. sci. tech. 56, 396 (1999).
  36. N. Amdursky, P. Beker, J. Schklovsky, E. Gazit, G. Rosenman, 'Ferroelectric and Related Phenomena in Biological and Bioinspired Nanostructures', Ferroelectrics 399, 107 (2010) https://doi.org/10.1080/00150193.2010.489871
  37. K.-A. N. Duerloo, M. T. Ong, and E. Reed, 'Intrinsic Piezoelectricity in Two-Dimensional Materials', J. Phys. Chem. Lett., 3, 2871 (2012) https://doi.org/10.1021/jz3012436
  38. H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z. J. Wong, Z. Ye, Y. Ye, X. Yin, and X. Zhang, 'Observation of piezoelectricity in free-standing monolayer $MoS_2$' Nat. Nanotechnol. 10, 151 (2015) https://doi.org/10.1038/nnano.2014.309
  39. J.-H. Lee, J. Y. Park, E. B. Cho, T. Y. Kim, S. A. Han, T.-H. Kim, Y. Liu, S. K. Kim, C. J. Roh, H.-J. Yoon, H. Ryu, W. Seung, J. S. Lee, J. Lee, S.-W. Kim, 'Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators', Adv. Mater., 29, 1606667 (2017) https://doi.org/10.1002/adma.201606667
  40. J. C. Anderson, C. Eriksson, 'Piezoelectric Properties of Dry and Wet Bone', Nature 227, 491 (1970) https://doi.org/10.1038/227491a0
  41. E. Fukada, 'Piezoelectricity of Wood', J. Phys. Soc. Jpn. 10, 149 (1955) https://doi.org/10.1143/JPSJ.10.149
  42. H. Athenstaedt, H. Claussen, D. Schaper, 'Epidermis of Human-Skin - Pyroelectric and Piezoelectric Sensor Layer', Science 216, 1018 (1982) https://doi.org/10.1126/science.6177041
  43. S. Guerin, A. Stapleton, D. Chovan, R. Mouras, M. Gleeson, C. McKeown, M. R. Noor, C. Silien, F. M. F. Rhen, A. L. Kohlkin, N. Liu, T. Soulimane, S. A. M. Tofail, and D. Thompson, 'Control of piezoelectricity in amino acids by supramolecular packing', Nat. Mater., 17, 180(2018) https://doi.org/10.1038/nmat5045
  44. A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, G. Rosenman, 'Strong Piezoelectricity in Bioinspired Peptide Nanotubes', ACS Nano 4, 610 (2010) https://doi.org/10.1021/nn901327v
  45. S. Vasilev, P. Zelenovskiy, D. Vasileva, A. Nuraeva, V. Y. Shur, A. L. Kholkin, 'Piezoelectric properties of diphenylalanine microtubes prepared from the solution', J. Phys. Chem. Solids. 93, 68 (2016) https://doi.org/10.1016/j.jpcs.2016.02.002
  46. V. Nguyen, R. Zhu, K. Jenkins, R. S. Yang, 'Selfassembly of diphenylalanine peptide with controlled polarization for power generation', Nat. Commun. 7, 13566 (2016) https://doi.org/10.1038/ncomms13566
  47. J.-H. Lee, K. Heo, K. Schulz-Schonhagen, J. H. Lee, M. S. Desai, H.-E. Jin, S.-W. Lee, 'Diphenylalanine Peptide Nanotube Energy Harvesters', ACS Nano, 12, 8138 (2018) https://doi.org/10.1021/acsnano.8b03118
  48. Z. L. Wang, 'Triboelectric nanogenerator as new energy technology and self-powered sensors - Principles, problems and perspectives', Faraday Discuss., 176, 447 (2014) https://doi.org/10.1039/C4FD00159A
  49. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, 'Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films' Nano Lett., 12, 3109 (2012) https://doi.org/10.1021/nl300988z
  50. K. Y. Lee, J. Chun, J.-H. Lee, K. N. Kim, N.-R. Kang, J.-Y. Kim, M. H. Kim, K.-S. Shin, M. K. Gupta, J. M. Baik, and S.-W. Kim, 'Hydrophobic Sponge Structure- Based Triboelectric Nanogenerator', Adv. Mater., 26, 5037 (2014) https://doi.org/10.1002/adma.201401184
  51. W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, and S.-W. Kim, 'Nanopatterned Textile-Based Wearable Triboelectric Nanogenerator', 9, 3501 (2015) https://doi.org/10.1021/nn507221f
  52. K. Y. Lee, J. Bae, S. Kim, J.-H. Lee, G. C. Yoon, M. K. Gupta, S. Kim, H. Kim, J. Park and S.-W. Kim, 'Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators', Nano Energy, 8, 165 (2014) https://doi.org/10.1016/j.nanoen.2014.06.008
  53. G.-T. Hwang, H. Park, J.-H. Lee, S. Oh, K.-I. Park, M. Byun, H. Park, G. Ahn, C. K. Jeong, K. No, H. Kwon, S.-G. Lee, B. Joung and K. J. Lee, 'Self?Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester', Adv. Mater., 26, 4880 (2014) https://doi.org/10.1002/adma.201400562
  54. K. N. Kim, J. Chun, J. W. Kim, K. Y. Lee, J.-U. Park, S.-W. Kim, Z. L. Wang and J. M. Baik, 'Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments' ACS Nano, 9, 6394 (2015) https://doi.org/10.1021/acsnano.5b02010
  55. G.-T. Hwang, Y. Kim, J.-H. Lee, S. Oh. C. K. Jeong, D. Y. Park, J. Ryu, H. Kwon, S.-G. Lee, B. Joung, D. Kim and K. J. Lee, 'Self-powered deep brain stimulation via a flexible PIMNT energy harvester' Energy Environ. Sci., 8, 2677 (2015) https://doi.org/10.1039/C5EE01593F
  56. G. A. Lesieutre, G. K. Ottman and H. F. Hofmann, 'Damping as a result of piezoelectric energy harvesting', J. Sound Vib., 269, 991 (2004) https://doi.org/10.1016/S0022-460X(03)00210-4
  57. X. Xue, S. Wang, W. Guo, Y. Zhang and Z. L. Wang, 'Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell', Nano Lett., 12, 5048 (2012) https://doi.org/10.1021/nl302879t
  58. X. Xue, P. Deng, S. Yuan, Y. Nie, B. He, L. Xing and Y. Zhang, 'CuO/PVDF nanocomposite anode for a piezodriven self-charging lithium battery', Energy Environ. Sci., 6, 2615 (2013) https://doi.org/10.1039/c3ee41648h
  59. X. Xue, P. Deng, B. He, Y. Nie, L. Xing, Y. Zhang and Z. L. Wang, 'Flexible Self-Charging Power Cell for One- Step Energy Conversion and Storage', Adv. Energy Mater., 4, 1301329 (2013)
  60. Y.-S. Kim, Y. Xie, X. Wen, S. Wang, S. J. Kim, H.-K. Song and Z. L. Wang, 'Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell', Nano Energy, 14, 77 (2015) https://doi.org/10.1016/j.nanoen.2015.01.006
  61. Y. Zhang, Y. Zhang, X. Xue, C. Cui, B. He, Y. Nie, P. Deng and Z. L. Wang, 'PVDF-PZT nanocomposite film based self-charging power cell', Nanotechnology, 25, 105401 (2014) https://doi.org/10.1088/0957-4484/25/10/105401
  62. R. Song, H. Jin, X. Li, L Fei, Y. Zhao, H. Huang, H. L.- W. Chan, Y. Wang and Y. Chai, 'A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes', J. Mater. Chem. A 3, 14963 (2015) https://doi.org/10.1039/C5TA03349G
  63. A. Ramadoss, B. Saravanakumar, S. W. Lee, Y.-S. Kim, S. J. Kim and Z. L. Wang, 'Piezoelectric-Driven Self- Charging Supercapacitor Power Cell', ACS Nano, 9, 4337 (2015) https://doi.org/10.1021/acsnano.5b00759
  64. E. P. Gilshteyn, D. Amanbaev, M. V. Silibin, A. Sysa, V. A. Kondrashov, A. S. Anisimov, T. Kallio, and A. G. Nasibulin, Flexible self-powered piezo-supercapacitor system for wearable electronics, Nanotechnology, 29, 325501 (2018) https://doi.org/10.1088/1361-6528/aac658
  65. P. Pazhamalai, K. Krishnamoorthy, V. K. Mariappan, S. Sahoo, S. Manoharan, and S.-J. Kim, A High Efficacy Self-Charging $MoSe_2$ Solid-State Supercapacitor Using Electrospun Nanofibrous Piezoelectric Separator with Ionogel Electrolyte, Adv. Mater. Interfaces, 5, 1800055 (2018) https://doi.org/10.1002/admi.201800055