DOI QR코드

DOI QR Code

Preparation and Electrochemical Performances Comparison of Carbon and Hydrogel Electrocatalysts for Seawater Battery

해수 전지용 탄소계 촉매와 Hydrogel 촉매의 제조 및 이들의 전기화학적 특성 비교

  • Kim, Kyoungho (Department of Chemical Industry, Dong-Eui Institute of Technology (DIT)) ;
  • Na, Young Soo (Department of Chemical Industry, Dong-Eui Institute of Technology (DIT)) ;
  • Lee, Man Sung (Department of Chemical Industry, Dong-Eui Institute of Technology (DIT))
  • 김경호 (동의과학대학교화학공업과) ;
  • 나영수 (동의과학대학교화학공업과) ;
  • 이만성 (동의과학대학교화학공업과)
  • Received : 2018.10.16
  • Accepted : 2018.11.05
  • Published : 2018.11.30

Abstract

As emerging the new electric devices, the commercial lithium ion batteries have faced with various challenges. In this regard, many efforts to solve challenges have been tried. In order to solve the above problems in terms of development of a new secondary battery, we successfully demonstrated the two electrocatalysts, such as MCWB and PPY hydrogel, PPY hydrogel and MCWB showed typical H3-type BET isotherm, indicating that micro- and mesopores existed. Especially, in terms of voltage efficiency at the first cycle, PPY hydrogel was higher than that of MCWB, but lower than that of PtC. More interestingly, the PPY hygrogel based seawater battery exhibited charge-discharge reversibility during 20 cycles, and the voltage efficiencies ranged from 70.32 % to 77.35 % in cyclic performance test.

새로운 전자 기기들이 등장함에 따라 시판되고 있는 리튬 이온 배터리 (lithium ion battery, LIB)는 다양한 문제에 직면해 있으며, 이와 관련하여 많은 해결 노력들이 시도되어 왔다. 차세대 이차 전지의 개발이라는 관점에서 LIB의 문제들을 해결하기 위해, 우리는 mesoporous carbon based on waste biomass (MCWB) 와 Polypyrrole (PPY) hydrogel과 같은 두 가지 종류의 촉매를 성공적으로 개발하였다. MCWB와 PPY hydrogel 촉매들은 전형적인 H3 타입 BET isotherm을 나타내었으며, 이는 micropore와 mseopore가 존재한다는 증거이다. 특히 PPY hydrogel을 기반으로 하는 해수 전지(seawater battery, SWB)의 경우, galvanostatic charge-discharge 시험에서 voltage efficiency성능은 MCWB를 적용한 battery보다 높았지만 Pt/C를 적용한 battery보다는 낮았다. 더욱 흥미롭게도, PPY hydrogel 기반의 SWB는 20 사이클(480hrs) 동안 우수한 가역적인 충/방전 특성을 나타내었으며, voltage efficiency성능은 70.32%에서 77.35% 범위의 우수한 특성을 나타내었다. 상기 연구 결과는 차세대 이차 전지를 위한 비귀금속 촉매 개발에 기여하는 결과라고 사료된다.

Keywords

JHHHB@_2018_v21n4_61_f0001.png 이미지

Fig. 1. Material and electrochemical analyses of the PtC; (a) Schematic illustration of the seawater battery, (b) SEM image, (c) TEM image, (d) galvanostatic charge discharge voltage profiles, (e) cycle performances during 20 cycles, and (f) Voltage efficiencies and Coulombic efficiencies during 20 cycles.

JHHHB@_2018_v21n4_61_f0002.png 이미지

Fig. 2. Material and electrochemical analyses of the MCWB; (a) SEM image, (b) BET isotherm profiles, (c) pore distributions, (d) galvanostatic charge discharge voltage profiles, (e) cycle performances during 20 cycles, and (f) Voltage efficiencies and Coulombic efficiencies during 20 cycles.

JHHHB@_2018_v21n4_61_f0003.png 이미지

Fig. 3. Material and electrochemical analyses of the PPY hydrogel; (a) SEM image, (b) BET isotherm profiles, (c) pore distributions, (d) galvanostatic charge discharge voltage profiles, (e) cycle performances during 20 cycles, and (f) Voltage efficiencies and Coulombic efficiencies during 20 cycles.

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review", Energy. Environ. Sci., 4, 3243, (2011). https://doi.org/10.1039/c1ee01598b
  2. H. Yadegari, L. Yongliang, M.N. Banis, X. Li, B. Wang, Q. Sun, R. Li, T.-K. Sham, X. Cui, X. Sun, "On rechargeability and reaction kinetics of sodium-air batteries", Energy Environ. Sci., 7, 3747, (2014). https://doi.org/10.1039/C4EE01654H
  3. J.-S. Lee, S.-T. Kim, R. Cao, N.-S. Choi, M. Liu, K.-T. Lee, J. Cho, "Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air ", Adv. Energy Mater., 1, 34, (2011). https://doi.org/10.1002/aenm.201000010
  4. P. K. Nayak, E. M. Erickson, F. Schipper, T. R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, R. Amalraj, B. Markovsky, and D. Aurbach, "Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li- and Mn-Rich Cathode Materials for Li-Ion Batteries", Adv. Energy Mater, 8, 1702397, (2018). https://doi.org/10.1002/aenm.201702397
  5. X. D. Zhang, J. L. Shi, J. Y. Liang, Y. X. Yin, J. N. Zhang, X. Q. Yu, and Y. G. Guo, "Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructured Spinel Li4 Mn5 O12 Coating", Adv. Mater, 30, 1801751, (2018). https://doi.org/10.1002/adma.201801751
  6. K. Kim, and J. K. Kim, "Comparison of structural characteristics and electrochemical properties of LiMPO4 (M=Fe, Mn, and Co) olivine compounds", Materials Letters, 176, 244, (2016). https://doi.org/10.1016/j.matlet.2016.04.145
  7. G. E. Blomgren, "The development and future of lithium ion batteries", J. Electrochem. Soc., 164(1), A5019, (2017). https://doi.org/10.1149/2.0251701jes
  8. K. Kim, M. P. Kim and W. G. Lee, "Preparation and evaluation of mesoporous carbon derived from waste materials for hybrid-type Li-air batteries", New J. Chem., 41, 8864, (2017). https://doi.org/10.1039/C7NJ00863E
  9. W. J. Kwak, Z. H. Chen, C. S. Yoon, J. K. Lee, K. Amine and Y. K. Sun, "Nanoconfinement of lowconductivity products in rechargeable sodium-air batteries", Nano Energy, 12, 123, (2015). https://doi.org/10.1016/j.nanoen.2014.11.057
  10. P. He, Y. G. Wang and H. S. Zhou," A Li-air fuel cell with recycle aqueous electrolyte for improved stability", Electrochem Commun, 12, 1686 (2010). https://doi.org/10.1016/j.elecom.2010.09.025
  11. J. Y. Cheon, K. Kim, Y. J. Sa, S. H. Sahgong, Y. Hong, J. Woo, S-D Yim, H. Y. Jeong, Y. Kim, and S. H. Joo, "Graphitic Nanoshell/Mesoporous Carbon Nanohybrids as Highly Effi cient and Stable Bifunctional Oxygen Electrocatalysts for Rechargeable Aqueous Na-Air Batteries", Adv. Energy Mater., 6 (7), 1501784, (2016).
  12. P. Hartmann, C.-L. Bender, M. Vracar, A.-K. Durr, A. Garsuch, J. Janek, P. Adelhelm, "A rechargeable roomtemperature sodium superoxide ($NaO_2$) battery", Nat. Mater. 12, 228, (2013). https://doi.org/10.1038/nmat3486
  13. K. Hayashi, K. Shima, F. Sugiyama, "A Mixed Aqueous/ Aprotic Sodium/Air Cell Using a NASICON Ceramic Separator Batteries and Energy Storage" J. Electrochem. Soc., 160, A1467, (2013). https://doi.org/10.1149/2.067309jes
  14. J. K. Kim, F. Mueller, H. Kim, D. Bresser, J. S. Park, D. H. Lim, G. T. Kim S. Passerini and Y. Kim, "Rechargeable-hybrid-seawater fuel cell", NPG Asia Mater., 6, E144, (2014). https://doi.org/10.1038/am.2014.106
  15. K. Kim, S. Hwang, J. Park, J. Han, J. Kim, Y. Kim, J. "Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode", Power Sources, 313, 46, (2016). https://doi.org/10.1016/j.jpowsour.2016.02.060
  16. H. Kim, J. Park, S. Sahgong, S. Park, J. Kim, Y. Kim, "Metal-free hybrid seawater fuel cell with an ether-based electrolyte", J. Mater. Chem. A, 2, 19584, (2014). https://doi.org/10.1039/C4TA04937C
  17. J.K. Kim, Y. J. Lim, H. Kim, G. B. Chob, Y. Kim, "A hybrid solid electrolyte for flexible solid-state sodium batteries", Energy. Environ, Sci., 8, 3589, (2015). https://doi.org/10.1039/C5EE01941A
  18. K. Kim, W. G. Lee, "Hybrid-type Li-air battery based on a polypyrrole/carbon nanocomposite catalyst as a cathode", New journal of chemistry, 41, 1321, (2017). https://doi.org/10.1039/C6NJ03402K
  19. H. Chang, S. H. Joo, C. Pak, "Synthesis and characterization of mesoporous carbon for fuel cell applications", J. Mater. Chem., 17, 3078, (2007). https://doi.org/10.1039/b700389g
  20. R. Bashyam, P. Zelenay, "A class of non-precious metal composite catalysts for fuel cells", Nature, 443, 63, (2006). https://doi.org/10.1038/nature05118
  21. S. Konwer and S. Dolui, "Synthesis and characterization of polypyrrole/graphite composites and study of their electrical and electrochemical properties", Mater. Chem. Phys., 124, 738, (2010). https://doi.org/10.1016/j.matchemphys.2010.07.049
  22. Y. Show and Y. Ueno, "Formation of platinum catalyst on carbon black using an in-liquid plasma method for fuel cells", nanomaterials, 7(31), 1, (2017).
  23. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity ", Pure & Appl. Chem., 57, 603, (1985). https://doi.org/10.1351/pac198557040603