DOI QR코드

DOI QR Code

광산지역 지반침하 모니터링을 위한 미소진동 분석프로그램 개발 현황

Microseismic Data Analysis Program for Monitoring Ground Subsidence in Mining Area

  • 투고 : 2018.09.11
  • 심사 : 2018.11.23
  • 발행 : 2018.11.30

초록

폐광지역 채굴적의 지반침하 징후를 분석하기 위해 지중변위의 발생에 따른 미소진동을 모니터링하기 위한 시스템이 일부 광산지역에서 운영되고 있다. 이러한 미소진동을 모니터링하기 위한 시스템은 크게 3성분 수진기, 데이터 로거 및 분석 프로그램으로 구성된다. 이 중 분석프로그램은 기존 P파 초동을 이용한 미소진동 발생 위치분석만을 수행하였으나 프로그램의 업그레이드를 통해 PS시를 이용한 위치분석이 가능해졌다. 또한 현장의 고유계수 및 파형분석을 통해 미소진동의 규모를 계산할 수 있는 기능이 추가되었다. 그리고 미소진동 분석 결과를 현장 사진과 중첩하는 기능을 추가하여 시각적으로 미소진동 발생위치를 확인 가능하도록 하였다.

A system for microseismic monitoring due to underground displacements is being operated in several mining areas in order to analyze ground subsidence. Microseismic monitoring system mainly consist of three components; 3-component geophone, data logger and analysis program. The previous analysis program had found the location of microseismic source by analysing only first arrivals of P-waves, but the upgraded analysis program has improved accuracy of the location by analysing both P- and S-waves. This analysis program also has upgraded the function to calculate the microseismic magnitude by using regional specific coefficient and microseismic amplitude. Also the program has upgraded the function to confirm visual location of microseismic source by superimposing field aerial photographs and the results.

키워드

MRTSBC_2018_v21n4_262_f0001.png 이미지

Fig. 1. Main view of GMO analysis tool (Ver 2.0).

MRTSBC_2018_v21n4_262_f0002.png 이미지

Fig. 3. Combined Microseismic data of Yuil mine.

MRTSBC_2018_v21n4_262_f0003.png 이미지

Fig. 2. Microseismic data of Yuil mine (BH 2).

MRTSBC_2018_v21n4_262_f0004.png 이미지

Fig. 5. Automatic picking of the first arrivals of P-waves using STA/LTA algorithm.

MRTSBC_2018_v21n4_262_f0005.png 이미지

Fig. 4. Effective range setting of the first arrival picking for P-waves.

MRTSBC_2018_v21n4_262_f0006.png 이미지

Fig. 6. Inversion results using the first arrival times of P-waves.

MRTSBC_2018_v21n4_262_f0007.png 이미지

Fig. 7. P-waves hodogram obtained from 3-component geophone.

MRTSBC_2018_v21n4_262_f0008.png 이미지

Fig. 8. S-waves hodogram obtained from 3-component geophone.

MRTSBC_2018_v21n4_262_f0009.png 이미지

Fig. 9. Results of polarization filter and automatic picking. (Left) Original signal, (Right) Polarization filter applied signal.

MRTSBC_2018_v21n4_262_f0010.png 이미지

Fig. 10. Microseismic 3-component raw data (a) and their polarization filtered data (b). Effective range setting enables proper first arrival S-wave acquisition.

MRTSBC_2018_v21n4_262_f0011.png 이미지

Fig. 11. Initial configuration setting menu for location inversion.

MRTSBC_2018_v21n4_262_f0012.png 이미지

Fig. 12. Inversion results using the first arrival times of P- and S- waves.

MRTSBC_2018_v21n4_262_f0013.png 이미지

Fig. 13. The area coefficient of Yuil mine for calculating microseismic magnitude.

MRTSBC_2018_v21n4_262_f0014.png 이미지

Fig. 14. Microseismic magnitude of Yuil mine in case of using 1 g detonator.

MRTSBC_2018_v21n4_262_f0015.png 이미지

Fig. 16. Three-dimensional diagram of inversion results.

MRTSBC_2018_v21n4_262_f0016.png 이미지

Fig. 15. Inversion result and satellite photo overlays.

Table 1. Program development environment.

MRTSBC_2018_v21n4_262_t0001.png 이미지

Table 2. Inversion results using the first arrival times of P-waves.

MRTSBC_2018_v21n4_262_t0002.png 이미지

Table 3. Inversion results using the first arrival times of P-and S-waves.

MRTSBC_2018_v21n4_262_t0003.png 이미지

Table 4. Equivalent explosive energy release, fault/fracture size and slip for different magnitude values (Maxwell, 2014).

MRTSBC_2018_v21n4_262_t0004.png 이미지

Table 5. Magnitude values according to explosive energy in Yuil mine.

MRTSBC_2018_v21n4_262_t0005.png 이미지

참고문헌

  1. Flinn, E. A., 1965, Signal analysis using rectilinearity and direction of particle motion, Proc. IEEE, 53(11), 1874-1876. https://doi.org/10.1109/PROC.1965.4462
  2. Gibowicz, S. J., and Kijko, A., 1994, An introduction to mining seismology, Academic Press.
  3. Kim, C. O., Um, W. Y., Chung, S. K., and Cheon, D. S., 2016, Case study of microseismic techniques for stability analysis of pillars in a limestone mine, Tunnel & Underground Space, 26(1), 1-11. https://doi.org/10.7474/TUS.2016.26.1.001
  4. Kim, M. S., Byun, J. M., and Seol, S. J., 2010, Study on micorseismic monitoring method for enhanced oil recovery (EOR), Journal of the Korean Society for Geosystem Engineering, 47(6), 871-879. In Korean with English abstracts
  5. Lee, G. H., Lee, K., Shin, C. H., and Kim, Y. W., 2014, Microseismic monitoring in shale gas development: A report, J. Korea Inst. Mineral Mining Eng., 51(2), 285-297 (in Korean with English abstract).
  6. Maxwell, S., 2014, Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservoirs, Society of Exploration Geophysicists Distinguished Instructor Series, No. 17.
  7. Montalbetti, J. F., and Kanasewich, E. R., 1970, Enhancement of teleseismic body phases with a polarization filter, Geophys. J. R. Astr. Soc., 21, 119-129. https://doi.org/10.1111/j.1365-246X.1970.tb01771.x
  8. Sheen, D. H., Cho, C. S., and Lee, H. I., 2013, Microseismic monitoring using seismic mini-array, Geophys. and Geophys. Explor., 16(1), 53-58 (in Korean with English abstract). https://doi.org/10.7582/GGE.2013.16.1.53