DOI QR코드

DOI QR Code

강우입자분포를 고려한 시강우의 강우에너지 산정 연구

Estimation of the Kinetic Energy of Raindrops for Hourly Rainfall Considering the Rainfall Particle Distribution

  • Kim, Seongwon (Department of Civil Engineering, Chungnam National University) ;
  • Jeong, Anchul (International Water Resources Research Institute, Chungnam National University) ;
  • Lee, Giha (Department of Construction & Disaster Prevention Engineering, Kyungpook National University) ;
  • Jung, Kwansue (Department of Civil Engineering, Chungnam National University)
  • 투고 : 2018.08.09
  • 심사 : 2018.11.27
  • 발행 : 2018.12.01

초록

우리나라에서 발생하는 대부분의 토양침식은 물에 의한 토양침식이며 강우와 밀접한 관계를 가진다. 강우로부터 발생하는 토양침식은 토지자원의 손실을 발생시키고 이후 하천에 유입되고 퇴적되어 하천수자원의 관리 및 이용에 많은 어려움을 주고 있다. 최근 기후변화의 영향으로 우리나라에서는 30mm/hr 이상의 집중호우의 발생횟수가 증가하고 있어 단기간에 토양침식이 발생할 가능성이 높아지고 있다. 본 연구에서는 강우의 물리적인 특성을 고려하기 위하여 누적분포함수를 이용하여 강우강도별 강우입자의 분포를 추정하고 단일 호우사상이 가지는 강우에너지를 계산하는 방법을 제안하고자 하였다. 강우에너지 산정공식을 개발하기 위하여 강우강도 0.254~152.4mm/hr에서 측정된 강우입자 자료를 이용하였다. 누적분포함수를 적용하여 산정된 강우에너지는 강우강도의 관계에서 멱함수형태로 증가하는 경향으로 나타났으며, 이 관계로 얻어진 식을 바탕으로 1~80mm/hr 강우강도의 강우 운동에너지를 산정한 결과 $0.03{\sim}48.26Jm^{-2}mm^{-1}$로 나타났다. 강우강도와 강우에너지의 관계를 바탕으로 강우에너지 식을 멱함수로 제시하였다. 본 연구에서 제안된 공식은 한시적으로 설치하는 침사지와 같은 시설물의 규모를 결정하는 계획의 토양침식량을 예측에 활용될 수 있을 것으로 판단된다.

The occurrence of soil erosions in Korea is mostly driven by flowing water which has a close relationship with rainfalls. The soil eroded by rainfalls flows into and deposits in the river and it polluted the water resources and making the rivers become difficult to be managed. Recently, the frequency of heavy rainfall events that are more than 30 mm/hr has been increasing in Korea due to the influence of climate change, which creating a favourable condition for the occurrence of soil erosion within a short time. In this study, we proposed a method to estimate the distribution of rainfall intensity and to calculate the energy produced by a single rainfall event using the cumulative distribution function that take into account of the physical characteristics of rainfall. The raindrops kinetic energy estimated by the proposed method are compared with the measured data from the previous studies and it is noticed that the raindrops kinetic energy estimated by the rainfall intensity variation is very similar to the results concluded from the previous studies. In order to develop an equation for estimating rainfall kinetic energy, rainfall particle size data measured at a rainfall intensity of 0.254~152.4 mm/hr were used. The rainfall kinetic energy estimated by applying the cumulative distribution function tended to increase in the form of a power function in the relation of rainfall intensity. Based on the equation obtained from this relationship, the rainfall kinetic energy of 1~80 mm/hr rainfall intensity was estimated to be $0.03{\sim}48.26Jm^{-2}mm^{-1}$. Based on the relationship between rainfall intensity and rainfall energy, rainfall kinetic energy equation is proposed as a power function form and it is expected that it can be used in the design of short-term operated facility such as the sizing of sedimentation basin that requires prediction of soil loss by a single rainfall event.

키워드

HJHGC7_2018_v19n12_15_f0001.png 이미지

Fig. 1. Comparison of raindrop velocity equations

HJHGC7_2018_v19n12_15_f0002.png 이미지

Fig. 2. Measured data by Laws and Parsons (1943)

HJHGC7_2018_v19n12_15_f0003.png 이미지

Fig. 3. Comparison of measured data (Laws & Parsons, 1943) and result of Eq. (7)

HJHGC7_2018_v19n12_15_f0004.png 이미지

Fig. 4. Comparison of measured data (Carter et al., 1974) and result of Eq. (7)

HJHGC7_2018_v19n12_15_f0005.png 이미지

Fig. 5. The rainfall intensity-kinetic energy relationship for the different equation

HJHGC7_2018_v19n12_15_f0006.png 이미지

Fig. 6. Normalization of kinetic energy

Table 1. RMSE of cumulative distribution result

HJHGC7_2018_v19n12_15_t0001.png 이미지

Table 2. Kinetic energy equations

HJHGC7_2018_v19n12_15_t0002.png 이미지

참고문헌

  1. Afullo, J. O. (2011), Raindrop size distribution modeling for radio link along the eastern coast of South Africa, Progress in Electromagnetics Research, Vol. 34, pp. 345-366. https://doi.org/10.2528/PIERB11082005
  2. Assouline, S. and Mualem, Y. (1989), The similarity of regional rainfall : a dimensionless model of drop size distribution, Transactions of the ASAE, Vol. 32(4), pp. 1216-1222. https://doi.org/10.13031/2013.31137
  3. Best, A. C. (1950), The size distribution of raindrops, Quarterly Journal of the Royal Meteorological Society, Vol. 76. pp. 16-36. https://doi.org/10.1002/qj.49707632704
  4. Brown, L. C. and Foster, G. R. (1987), Storm erosivity using idealized intensity distribution, Vol. 30, pp. 379-386. https://doi.org/10.13031/2013.31957
  5. Carter, C. E., Greer, J. D., Braud, H. J. and Floyd, J. M. (1974), Raindrop characteristics in South Central United States, Transactions of the ASAE, Vol. 17(6), pp. 1033-1037. https://doi.org/10.13031/2013.37021
  6. Checa, R. and Tapiador, F. J. (2011), A maximum entropy modelling of the rain drop size distribution, Entropy, Vol. 13, pp. 293-315. https://doi.org/10.3390/e13020293
  7. Chow, V. T. and Harbaugh, T. E. (1965), Raindrop production for laboratory watershed experimentation, Journal of Geophysical Research, Vol. 70(24), pp. 6111-6119. https://doi.org/10.1029/JZ070i024p06111
  8. Foote, G. B. and Tori, P. S. (1969), Terminal velocity of raindrops Aloft, Journal of Applied Meteorology, Vol. 8(2), pp. 249-253. https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2
  9. Foster, G. R., McCool, D. K. and Moldenhauer, W. C. (1981), Conversion of the universal soil loss equation to SI metric units, Journal of Soil and Water Conservation, Vol. 36, pp. 355-359.
  10. Gunn, R. and Kinzer, G. D. (1949), The terminal velocity of fall for water drops in stagnant air, Jounal of Meteor, Vol. 6, pp. 243-248. https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
  11. Kim, J. K., Yang, D. Y. and Kim, M. S. (2010), Evaluating physical characteristics of raindrop in Anseong, Gyeonggi Province, Journal of the Korea Geomorphological Association, Vol. 17(1), pp. 49-57 (In Korean).
  12. Kim, J. K., Yang, D. Y., Kim, M. S., Kim, J. Y. and Shin, H. M. (2009), Growth of gully in the mountainous slope underlain by granite, Journal of Korea Water Resources Association, Vol. 16(3), pp. 87-100 (In Korean).
  13. Kim, J. Y., Yi, S. H. and Kim, J. W. (2012), A study on mountain stream type deposit at Suhang valley in Odaecheon, The Association of Korean Geographers, Vol. 1(1), pp. 75-90 (In Korean). https://doi.org/10.25202/JAKG.1.1.7
  14. Kim, M. S. (2016), Analysis of sediment yield properties in two small watersheds situated under granite and gneiss using GeoWEPP model, The Association of Korean Geographers, Vol. 5(1), pp. 61-70 (In Korean). https://doi.org/10.25202/JAKG.5.1.6
  15. Kim, J. K., Kang, J. W., Jeong, G. S., Choi, H. and Kim, M. S. (2016), Suggestion for the optimum operating methods of rainfall simulator through the analysis of raindrop's characteristics, The Association of Korean Geographers, Vol. 5(5), pp. 51-60 (In Korean). https://doi.org/10.25202/JAKG.5.1.5
  16. KMA (Korea Meteorological Administration) (2018), Abnormal climate report (In Korean).
  17. Laws, J. O. (1941), Measurements of the fall-velocities of waterdrops and raindrops, Transactions of American Geophysical Union, Vol. 22, pp. 709-712. https://doi.org/10.1029/TR022i003p00709
  18. Laws, J. O. and Parsons, D. A. (1943), The relation of raindropsize to intensity, Transactions of American Geophysical Union, Vol. 24, pp. 452-460. https://doi.org/10.1029/TR024i002p00452
  19. Lee, J. H., Oh, K. D. and Heo, J. H. (2010), Assessment of rainfall parameters to predict rainfall-runoff erosive index, Proceeding of KSCE conference, pp. 1881-1884 (In Korean).
  20. Lim, Y. S., Kim, J. W., Kim, J. K. and Park, B. I. (2012), Evaluation of kinetic energy of raindrops at Deajeon city using laser-optical disdrometer, Journal of the Korea Geomorphological Association, Vol. 19(2), pp 133-143 (In Korean).
  21. Llasat, M. C. (2001), An objective classification of rainfall events on the basis of their convective features: application to rainfall intensity in the northeast of Spain, International Journal of Climatology: A Journal of the Royal Meteorological Society, Vol. 21(11), pp. 1385-1400. https://doi.org/10.1002/joc.692
  22. Marshall, J. S. and Palmer, W. McK. (1948), The distribution of raindrops with size, Jounal of Meteor, Vol. 5, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  23. Marshall, J. S., Langille, R. C. and Palmer, W. McK. (1947), Measurement of rainfall by radar, Jounal of Meteor, Vol. 4, pp. 186-192. https://doi.org/10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2
  24. McGregor, K. C., Bingner, R. L., Bowie, A. J. and Foster, G. R. (1995), Erosivity index values for northern mississippi, Transactions of the American Society of Agricultural Engineers, Vol. 38(4), pp. 1039-1047. https://doi.org/10.13031/2013.27921
  25. Meyer, L. D. and Harmon, W. C. (1979), Multiple-intensity rainfall simulator for erosion research on row sideslopes, Transactions of the American Society of Agricultural Engineers, Vol. 22(1), pp. 100-103. https://doi.org/10.13031/2013.34973
  26. Meyna, A. and Pauli, B. (2003), Taschenbuch der Zuverlässigkeitsund Sicherheitstechnik, Carl Hanser Verlag, Munchen.
  27. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D. and Styczen, M. E. (1998), The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments, Earth Surface Processes and Landforms, Vol. 23, pp. 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  28. Mualem, Y. and Assouline, S. (1986), Mathematical model for rain drop distribution and rainfall kinetic energy, Transactions of the American Society of Agricultural Engineers, Vol. 29(2), pp. 494-500. https://doi.org/10.13031/2013.30179
  29. Onaga, K., Shirai, K. and Yoshimaga, A. (1988), Rainfall erosion and how to control its efforts on farmland in Okinawa. In: Rimwanich S (ed) Land conservation for future generations. Department of Land Development, Bangkok, pp. 627-639.
  30. Pedersen, H. S. and B. Hasholt (1995), Influence of windspeed on rainsplash erosion, Catena, Vol. 24, pp. 39-54. https://doi.org/10.1016/0341-8162(94)00024-9
  31. Rosewell, C. J. (1986), Rainfall kinetic energy in Eastern Australia, Journal of Climate and Applied Meterology, Vol. 25, pp. 1965-1971.
  32. Smets, T., Borselli, L., Poesen, J. and Torri, D. (2011), Evaluation of the EUROSEM model for predicting the effects of erosioncontrol blankets on runoff and interrill soil erosion by water, Geotext Geomembr, Vol. 29, pp. 285-297. https://doi.org/10.1016/j.geotexmem.2011.01.012
  33. Simth, D. D. and Wischmeier, W. H. (1962), Rainfall erosion, Advances in agronomy, Vol. 14, 109-148.
  34. Son, K. I. (2001), Applicability examination of the RUSLE sediment yield prediction equations in Korea, Journal of Korea Water Resources Association, Vol. 34(3), pp. 199-207 (In Korean).
  35. Torri, D., Sfalanga, M. and Del Sette, M. (1987), Splash detachment: runoff depth and soil cohesion, CATENA, Vol. 14, pp. 149-155. https://doi.org/10.1016/S0341-8162(87)80013-9
  36. Villermaux, E. and Bossa, B. (2009), Single-drop fragmentation determines size distribution of raindrops, Nature physics, Vol. 5, pp. 697-702. https://doi.org/10.1038/nphys1340
  37. von Lenard, P. (1904), Uber regen, Meteor. Zeit., Vol. 6, pp. 92-262.
  38. Wischmeier, W. H. and Smith, D. D. (1958), Rainfall energy and its relationship to soil loss, Transactions of American Geophysical Union, Vol. 39(2), pp. 285-291. https://doi.org/10.1029/TR039i002p00285
  39. Young, R. A. and Wlersma, J. L. (1973), The role of rainfall impact in soil detachment and transport, Water Resources Research, Vol. 9(6), pp. 1629-1636. https://doi.org/10.1029/WR009i006p01629

피인용 문헌

  1. 시강우를 고려한 천천유역의 토양침식 및 퇴적 평가 vol.21, pp.4, 2018, https://doi.org/10.14481/jkges.2020.21.4.5