DOI QR코드

DOI QR Code

A Modified Method for Registration of 3D Point Clouds with a Low Overlap Ratio

적은 오버랩에서 사용 가능한 3차원 점군 정합 방법

  • Kim, Jigun (Hyundai Steel) ;
  • Lee, Junhee (The School of Mechanical Engineering, Gwangju Institute of Science and Technology) ;
  • Park, Sangmin (The School of Mechanical Engineering, Gwangju Institute of Science and Technology) ;
  • Ko, Kwanghee (The School of Mechanical Engineering, Gwangju Institute of Science and Technology)
  • Received : 2018.10.08
  • Accepted : 2018.11.16
  • Published : 2018.12.01

Abstract

In this paper, we propose an algorithm for improving the accuracy and rate of convergence when two point clouds with noise and a low overlapping area are registered to each other. We make the most use of the geometric information of the underlying geometry of the point clouds with noise for better accuracy. We select a reasonable region from the noisy point cloud for registration and combine a modified acceleration algorithm to improve its speed. The conventional accuracy improvement method was not possible in a lot of noise, this paper resolves the problem by selecting the reasonable region for the registration. And this paper applies acceleration algorithm for a clone to low overlap point cloud pair. A simple algorithm is added to the conventional method, which leads to 3 or 4 times faster speed. In conclusion, this algorithm was developed to improve both the speed and accuracy of point cloud registration in noisy and low overlap case.

본 논문에서는 노이즈를 포함한 채 오버랩 영역이 적은 두 점군을 정합할 때 정확도와 수렴 속도를 향상시키는 알고리즘을 제시한다. 정확도를 높이기 위하여 점군의 기하학 정보를 최대한 활용하며, 정합 단계에서는 노이즈가 포함된 점군에서 오버랩 되는 영역을 적절히 선택하고, 개선된 가속 알고리즘을 사용하여 정합 속도를 향상시킨다. 정확도를 향상시키는 기존의 방법은 노이즈가 많은 점군에 적용할 수 없으므로, 본 논문에서는 정합에 사용되는 영역을 선택하는 것으로써 기존 방법의 문제를 해결하였다. 또한 똑같은 점군쌍에서만 적용되는 가속 알고리즘을 낮은 오버랩의 점군쌍에 적용하였다. 기존의 방법에 간단한 알고리즘을 추가함으로써 서너 배 더 빠른 수렴 속도를 낼 수 있도록 하였다. 결론적으로, 노이즈가 많고 오버랩이 적은 점군쌍의 정합에 있어서 본 논문에서 제시하는 알고리즘을 적용하면 속도와 정확도가 향상되었음을 알 수 있다.

Keywords

References

  1. F. Deng, "Registration between Multiple Laser Scanner Data Sets," Laser Scanning, Theory and Applications, pp.449-472, 2011.
  2. J. Kim, "A modified Method to Accelerate for Registration of 3D Point Cloud with low Overlapping Ratios for Rigid Body," M.Sc. Thesis, School of Mechanical Engineering, Gwangju Institute of Science and Technology, 2018.
  3. P. Besl and N. McKay, "A method for registration of 3-d shapes," Pattern Analysis and Machine Intelligence, 14 (2) pp.239-256, 1992. https://doi.org/10.1109/34.121791
  4. J. Lee and K. Ko, "Utilization of GPS and IMU Sensors in the Initial Registration of Two Point Clouds," Korean Journal of Computational Design and Engineering, 23(2), pp. 173-183, 2018. https://doi.org/10.7315/CDE.2018.173
  5. K. Pulli, "Multiview registration for large data sets," 3-D Digital Imaging and Modeling, pp. 160-168, 1999.
  6. D. Yun, S. Choi, S. Kim and K. Ko, "Registration of multiview point clouds for application to ship fabrication," Graphical Models, 90, pp.1-12, 2017. https://doi.org/10.1016/j.gmod.2017.02.001
  7. Y. Chen and G. Medioni, "Object modeling by registration of multiple range images," Image and Vision Computing , 10 (3) pp.145-155, 1992. https://doi.org/10.1016/0262-8856(92)90066-C
  8. B. Horn, "Closed-form solution of absolute orientation using unit quaternions," Journal of the Optical Society of America A, 4 (4) pp.629-642, 1987. https://doi.org/10.1364/JOSAA.4.000629
  9. T. Masuda, K. Sakaue and N. Yokoya, "Registration and integration of multiple range images for 3-d model construction," Pattern Recognition , pp.879-883, 1996.
  10. Y.Wu,W.Wang, K. Lu, Y.Wei and Z. Chen, "A new method for registration of 3d point sets with low overlapping ratios," Procedia CIRP conference on Computer Aided Tolerancing, 27, pp.202-206, 2015.
  11. W. Li and P. Song, "A modified icp algorithm based on dynamic adjustment factor for registration of point cloud and cad model," Pattern Recognition Letters, 65, pp.88-94, 2015. https://doi.org/10.1016/j.patrec.2015.07.019
  12. R. Fisher, "From Surface to Objects: Computer Vision and Three Dimensional Scene Analysis," John Wiley and Sons, 1989.
  13. L. Stefano, S. Mattoccia and F. Tombari, "ZNCC-based template matching using bounded partial correlation," Pattern Recognition Letters, 26, pp.2129-2134, 2005. https://doi.org/10.1016/j.patrec.2005.03.022

Cited by

  1. 스마트마이닝을 위한 정밀 광산공간정보 구축 및 광체 모델링 vol.38, pp.6, 2018, https://doi.org/10.7848/ksgpc.2020.38.6.725
  2. 기구축 공간데이터를 활용한 3차원 건물모델의 위치정합 기법 연구 - ICP 알고리즘 구현 중심으로 - vol.51, pp.1, 2021, https://doi.org/10.22640/lxsiri.2021.51.1.67
  3. 건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석 vol.11, pp.4, 2021, https://doi.org/10.13161/kibim.2021.11.4.001